Exponential bases for partitions of intervals

被引:3
|
作者
Pfander, Goetz [1 ]
Revay, Shauna [2 ]
Walnut, David [2 ]
机构
[1] Kathol Univ Eichstatt, Eichstatt, Germany
[2] George Mason Univ, Fairfax, VA 22030 USA
关键词
Exponential systems; Riesz bases of exponentials; Partitions of intervals; Beatty-Frankel sequences; Avdonin maps; Weyl-Khinchin equidistribution theorem; Avdonin; 1/4-theorem; Basis extraction; Bandlimited functions; Sampling of bandlimited functions; INTERPOLATING-SEQUENCES; LIMITED FUNCTIONS;
D O I
10.1016/j.acha.2023.101607
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a partition of [0, 1] into intervals ������1, ... , ������������we prove the existence of a partition of Z into Lambda 1, ... ,Lambda ������such that the complex exponential functions with frequencies in Lambda ������form a Riesz basis for ������2(������������), and furthermore, that for any ������ subset of {1, 2, ... , ������}, the exponential functions with frequencies in & Union;������is an element of ������Lambda ������form a Riesz basis for ������2(������)for any interval ������with length |������|= n-ary sumation ������is an element of ������|������������|. The construction extends to infinite partitions of [0, 1], but with size limitations on the subsets ������ subset of Z; it combines the ergodic properties of subsequences of Z known as Beatty-Fraenkel sequences with a theorem of Avdonin on exponential Riesz bases.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] UNCONDITIONAL EXPONENTIAL BASES IN HILBERT SPACES
    Isaev, K. P.
    Yulmukhametov, R. S.
    UFA MATHEMATICAL JOURNAL, 2011, 3 (01): : 3 - 15
  • [32] Frame Spectral Pairs and Exponential Bases
    Christina Frederick
    Azita Mayeli
    Journal of Fourier Analysis and Applications, 2021, 27
  • [33] Frame Spectral Pairs and Exponential Bases
    Frederick, Christina
    Mayeli, Azita
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (05)
  • [34] Exponential-spline wavelet bases
    Khalidov, I
    Unser, M
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 625 - 628
  • [35] Singular strictly increasing functions and a problem on partitions of closed intervals
    I. S. Kats
    Mathematical Notes, 2007, 81 : 302 - 307
  • [36] Unconditional exponential bases in Bergman spaces
    Isaev K.P.
    Yulmukhametov R.S.
    Proceedings of the Steklov Institute of Mathematics, 2006, 253 (1) : 78 - 89
  • [37] Notes on universality in short intervals and exponential shifts
    Andersson, Johan
    Garunkstis, Ramunas
    Kacinskaite, Roma
    Nakai, Keita
    Pankowski, Lukasz
    Sourmelidis, Athanasios
    Steuding, Rasa
    Steuding, Joern
    Wananiyakul, Saeree
    LITHUANIAN MATHEMATICAL JOURNAL, 2024, 64 (02) : 125 - 137
  • [38] Exponential sums over primes in short intervals
    Liu Jianya
    Lu Guangshi
    Zhan Tao
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (05): : 611 - 619
  • [39] The Size of Exponential Sums on Intervals of the Real Line
    Erdelyi, Tamas
    Khodjasteh, Kaveh
    Viola, Lorenza
    CONSTRUCTIVE APPROXIMATION, 2012, 35 (01) : 123 - 136
  • [40] Confidence intervals for a bounded mean in exponential families
    Wang, Hsiuying
    STATISTICS, 2014, 48 (02) : 327 - 343