A note on exponential Riesz bases

被引:4
|
作者
Caragea, Andrei [1 ]
Lee, Dae Gwan [1 ]
机构
[1] Katholische Univ Eichstatt Ingolstadt, Math Geograph Fak, D-85071 Eichstatt, Germany
关键词
Exponential bases; Riesz bases; Hierarchical structure; Finite union of intervals; Kronecker-Weyl equidistribution along the primes;
D O I
10.1007/s43670-022-00031-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that if I & ell;=[a & ell;,b & ell;)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_\ell = [a_\ell ,b_\ell )$$\end{document}, & ell;=1,& mldr;,L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell =1,\ldots ,L$$\end{document}, are disjoint intervals in [0, 1) with the property that the numbers 1,a1,& mldr;,aL,b1,& mldr;,bL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1, a_1, \ldots , a_L, b_1, \ldots , b_L$$\end{document} are linearly independent over Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}$$\end{document}, then there exist pairwise disjoint sets Lambda & ell;subset of Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _\ell \subset {\mathbb {Z}}$$\end{document}, & ell;=1,& mldr;,L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell =1, \ldots , L$$\end{document}, such that for every J subset of{1,& mldr;,L}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J \subset \{ 1, \ldots , L \}$$\end{document}, the system {e2 pi i lambda x:lambda is an element of boolean OR & ell;is an element of J Lambda & ell;}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e<^>{2\pi i \lambda x} : \lambda \in \cup _{\ell \in J} \, \Lambda _\ell \}$$\end{document} is a Riesz basis for L2(boolean OR & ell;is an element of JI & ell;)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2 ( \cup _{\ell \in J} \, I_\ell )$$\end{document}. Also, we show that for any disjoint intervals I & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_\ell $$\end{document}, & ell;=1,& mldr;,L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell =1, \ldots , L$$\end{document}, contained in [1, N) with N is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \in {\mathbb {N}}$$\end{document}, the orthonormal basis {e2 pi inx:n is an element of Z}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e<^>{2\pi i n x} : n \in {\mathbb {Z}}\}$$\end{document} of L2[0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2[0,1)$$\end{document} can be complemented by a Riesz basis {e2 pi i lambda x:lambda is an element of Lambda}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e<^>{2\pi i \lambda x}: \lambda \in \Lambda \}$$\end{document} for L2(boolean OR & ell;=1LI & ell;)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2(\cup _{\ell =1}<^>L \, I_{\ell })$$\end{document} with some set Lambda subset of(1NZ)\Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda \subset (\frac{1}{N} {\mathbb {Z}}) \backslash {\mathbb {Z}}$$\end{document}, in the sense that their union {e2 pi i lambda x:lambda is an element of Z boolean OR Lambda}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e<^>{2\pi i \lambda x} : \lambda \in {\mathbb {Z}}\cup \Lambda \}$$\end{document} is a Riesz basis for L2([0,1)boolean OR I1 boolean OR & ctdot;boolean OR IL)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2 ( [0,1) \cup I_1 \cup \cdots \cup I_L )$$\end{document}.
引用
收藏
页数:14
相关论文
共 50 条