Multichannel semi-supervised active learning for PolSAR image classification

被引:1
|
作者
Hua, Wenqiang [1 ]
Zhang, Yurong [1 ]
Liu, Hongying [2 ]
Xie, Wen [1 ]
Jin, Xiaomin [1 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Comp Sci & Technol, Xian 710121, Peoples R China
[2] Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian 710071, Peoples R China
关键词
Active learning; PolSAR image classification; Deep learning; Multichannel learning; FEATURES; NETWORK;
D O I
10.1016/j.jag.2024.103706
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Deep neural networks have recently been extensively utilized for Polarimetric synthetic aperture radar (PolSAR) image classification. However, this heavily relies on extensive labeled data which is both costly and laborintensive. To lower the collection of labeling data and enhance the classification performance, a novel multichannel semi -supervised active learning (MSSAL) method is proposed for PolSAR image classification. First, a multichannel strategy -based committee model with cooperative representation classification is presented to explore more effective information in the limited training data. Second, a loss prediction (LP) module is designed to identify the most informative pixels, and an ensemble learning (EL) strategy is designed to select the pixels with the highest confidence. Then, the deep neural network is fine-tuned with the obtaining target pixels through LP and EL in each iteration. Finally, the trained deep model predicts labels for all unlabeled data, outputting the final classification results. The proposed method is evaluated on three realworld PolSAR datasets, demonstrating superior performance to other PolSAR image classification methods with limited labeled samples.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] SEMI-SUPERVISED LEARNING BY DOMAIN ADAPTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Deshpande, Shailesh S.
    Banolia, Chaman
    Balamuralidhar, P.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6009 - 6012
  • [42] Multi-view semi-supervised learning for image classification
    Zhu, Songhao
    Sun, Xian
    Jin, Dongliang
    NEUROCOMPUTING, 2016, 208 : 136 - 142
  • [43] Collaborative Learning with Unreliability Adaptation for Semi-Supervised Image Classification
    Huo, Xiaoyang
    Zeng, Xiangping
    Wu, Si
    Shen, Wenjun
    Wong, Hau-San
    PATTERN RECOGNITION, 2023, 133
  • [44] Semi-supervised dictionary learning with label propagation for image classification
    Chen L.
    Yang M.
    Computational Visual Media, 2017, 3 (1) : 83 - 94
  • [45] Active deep learning method for semi-supervised sentiment classification
    Zhou, Shusen
    Chen, Qingcai
    Wang, Xiaolong
    NEUROCOMPUTING, 2013, 120 : 536 - 546
  • [46] Incorporate active learning to semi-supervised industrial fault classification
    Yin, Lili
    Wang, Huangang
    Fan, Wenhui
    Kou, Li
    Lin, Tingyu
    Xiao, Yingying
    JOURNAL OF PROCESS CONTROL, 2019, 78 : 88 - 97
  • [47] Semi-supervised bundle manifold learning for hyperspectral image classification
    Li, Zhi-Min
    Zhang, Jie
    Huang, Hong
    Jiang, Tao
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2015, 23 (05): : 1434 - 1442
  • [48] Collaborative Learning with Unreliability Adaptation for Semi-Supervised Image Classification
    Huo, Xiaoyang
    Zeng, Xiangping
    Wu, Si
    Shen, Wenjun
    Wong, Hau-San
    PATTERN RECOGNITION, 2023, 133
  • [49] A novel semi-supervised learning framework for hyperspectral image classification
    Ye, Zhijing
    Li, Hong
    Song, Yalong
    Wang, Jianzhong
    Benediktsson, Jon Atli
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2016, 14 (02)
  • [50] Fuzzy Superpixels Based Semi-Supervised Similarity-Constrained CNN for PolSAR Image Classification
    Guo, Yuwei
    Sun, Zhuangzhuang
    Qu, Rong
    Jiao, Licheng
    Liu, Fang
    Zhang, Xiangrong
    REMOTE SENSING, 2020, 12 (10)