A novel semi-supervised learning framework for hyperspectral image classification

被引:8
|
作者
Ye, Zhijing [1 ]
Li, Hong [1 ]
Song, Yalong [1 ]
Wang, Jianzhong [2 ]
Benediktsson, Jon Atli [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Sam Houston State Univ, Dept Math & Stat, Huntsville, TX 77341 USA
[3] Univ Iceland, Fac Elect & Comp Engn, IS-107 Reykjavik, Iceland
基金
中国国家自然科学基金;
关键词
Hyperspectral image classification; semi-supervised learning; boxed-based smooth ordering; multiple 1D-embedding-based interpolation;
D O I
10.1142/S0219691316400051
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose a novel semi-supervised learning classification framework using box-based smooth ordering and multiple 1D-embedding-based interpolation (M1DEI) in [J. Wang, Semi-supervised learning using multiple one-dimensional embedding-based adaptive interpolation, Int. J. Wavelets Multiresolut. Inf. Process. 14(2) (2016) 11 pp.] for hyperspectral images. Due to the lack of labeled samples, conventional supervised approaches cannot generally perform efficient enough. On the other hand, obtaining labeled samples for hyperspectral image classification is difficult, expensive and time-consuming, while unlabeled samples are easily available. The proposed method can effectively overcome the lack of labeled samples by introducing new labeled samples from unlabeled samples in a label boosting framework. Furthermore, the proposed method uses spatial information from the pixels in the neighborhood of the current pixel to better catch the features of hyperspectral image. The proposed idea is that, first, we extract the box (cube data) of each pixel from its neighborhood, then apply multiple 1D interpolation to construct the classifier. Experimental results on three hyperspectral data sets demonstrate that the proposed method is efficient, and outperforms recent popular semi-supervised methods in terms of accuracies.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Semi-supervised deep learning for hyperspectral image classification
    Kang, Xudong
    Zhuo, Binbin
    Duan, Puhong
    REMOTE SENSING LETTERS, 2019, 10 (04) : 353 - 362
  • [2] Semi-supervised feature learning for hyperspectral image classification
    Zhang, Pengfei
    Cao, Liujuan
    Wang, Cheng
    Li, Jonathan
    2ND ISPRS INTERNATIONAL CONFERENCE ON COMPUTER VISION IN REMOTE SENSING (CVRS 2015), 2016, 9901
  • [3] SEMI-SUPERVISED CO-TRAINING AND ACTIVE LEARNING FRAMEWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Samiappan, Sathishkumar
    Moorhead, Robert J., II
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 401 - 404
  • [4] Combining Semi-Supervised and Active Learning for Hyperspectral Image Classification
    Li, Mingzhi
    Wang, Rui
    Tang, Ke
    2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING (CIDM), 2013, : 89 - 94
  • [5] Unified active and semi-supervised learning for hyperspectral image classification
    Wang, Zengmao
    Du, Bo
    GEOINFORMATICA, 2023, 27 (01) : 23 - 38
  • [6] SEMI-SUPERVISED LEARNING BY DOMAIN ADAPTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Deshpande, Shailesh S.
    Banolia, Chaman
    Balamuralidhar, P.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6009 - 6012
  • [7] SEMI-SUPERVISED ACTIVE LEARNING FOR URBAN HYPERSPECTRAL IMAGE CLASSIFICATION
    Dopido, Inmaculada
    Li, Jun
    Plaza, Antonio
    Bioucas-Dias, Jose M.
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 1586 - 1589
  • [8] Unified active and semi-supervised learning for hyperspectral image classification
    Zengmao Wang
    Bo Du
    GeoInformatica, 2023, 27 : 23 - 38
  • [9] Semi-supervised bundle manifold learning for hyperspectral image classification
    Li, Zhi-Min
    Zhang, Jie
    Huang, Hong
    Jiang, Tao
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2015, 23 (05): : 1434 - 1442
  • [10] A Semi-supervised Active Learning Framework for Image Classification
    Li, Han-yi
    Yang, Ming
    Kang, Nan-nan
    Yue, Lu-lu
    MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 4765 - 4769