Multichannel semi-supervised active learning for PolSAR image classification

被引:1
|
作者
Hua, Wenqiang [1 ]
Zhang, Yurong [1 ]
Liu, Hongying [2 ]
Xie, Wen [1 ]
Jin, Xiaomin [1 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Comp Sci & Technol, Xian 710121, Peoples R China
[2] Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian 710071, Peoples R China
关键词
Active learning; PolSAR image classification; Deep learning; Multichannel learning; FEATURES; NETWORK;
D O I
10.1016/j.jag.2024.103706
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Deep neural networks have recently been extensively utilized for Polarimetric synthetic aperture radar (PolSAR) image classification. However, this heavily relies on extensive labeled data which is both costly and laborintensive. To lower the collection of labeling data and enhance the classification performance, a novel multichannel semi -supervised active learning (MSSAL) method is proposed for PolSAR image classification. First, a multichannel strategy -based committee model with cooperative representation classification is presented to explore more effective information in the limited training data. Second, a loss prediction (LP) module is designed to identify the most informative pixels, and an ensemble learning (EL) strategy is designed to select the pixels with the highest confidence. Then, the deep neural network is fine-tuned with the obtaining target pixels through LP and EL in each iteration. Finally, the trained deep model predicts labels for all unlabeled data, outputting the final classification results. The proposed method is evaluated on three realworld PolSAR datasets, demonstrating superior performance to other PolSAR image classification methods with limited labeled samples.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [31] SEMI-SUPERVISED CO-TRAINING AND ACTIVE LEARNING FRAMEWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Samiappan, Sathishkumar
    Moorhead, Robert J., II
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 401 - 404
  • [32] Active Semi-Supervised Random Forest for Hyperspectral Image Classification
    Zhang, Youqiang
    Cao, Guo
    Li, Xuesong
    Wang, Bisheng
    Fu, Peng
    REMOTE SENSING, 2019, 11 (24)
  • [33] A Noise Robust Batch Mode Semi-supervised and Active Learning Framework for Image Classification
    Hou, Chaoqun
    Yang, Chenhui
    Ren, Fujia
    Lin, Rongjie
    IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 541 - 552
  • [34] Plusmine: Dynamic Active Learning with Semi-Supervised Learning for Automatic Classification
    Klein, Jan
    Bhulai, Sandjai
    Hoogendoorn, Mark
    van der Mei, Rob
    2021 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT 2021), 2021, : 146 - 153
  • [35] Semi-Supervised Active Learning for Sound Classification in Hybrid Learning Environments
    Han, Wenjing
    Coutinho, Eduardo
    Ruan, Huabin
    Li, Haifeng
    Schuller, Bjoern
    Yu, Xiaojie
    Zhu, Xuan
    PLOS ONE, 2016, 11 (09):
  • [36] Active Learning for Semi-supervised Classification Based On Information Entropy
    Jie, Shen
    Xin, Fan
    Wen, Shen
    2009 INTERNATIONAL FORUM ON INFORMATION TECHNOLOGY AND APPLICATIONS, VOL 2, PROCEEDINGS, 2009, : 591 - 595
  • [37] SEMI-SUPERVISED FEATURE LEARNING FOR REMOTE SENSING IMAGE CLASSIFICATION
    Yin, Xiaoshuang
    Yang, Wen
    Xia, Gui-Song
    Dong, Lixia
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1261 - 1264
  • [38] The incremental image classification method based on semi-supervised learning
    Wu, Weiwen
    Wang, Zhiyan
    Liang, Peng
    Xu, Xiaowei
    International Journal of Digital Content Technology and its Applications, 2012, 6 (19) : 305 - 314
  • [39] Incremental image classification method based on semi-supervised learning
    Liang, Peng
    Li, Shao-Fa
    Qin, Jiang-Wei
    Luo, Jian-Gao
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2012, 25 (01): : 111 - 117
  • [40] Semi-supervised dictionary learning with label propagation for image classification
    Lin Chen
    Meng Yang
    Computational Visual Media, 2017, 3 (01) : 83 - 94