An Adaptive Gradient Privacy-Preserving Algorithm for Federated XGBoost

被引:1
|
作者
Cai, Hongyi [1 ]
Cai, Jianping [1 ]
Sun, Lan [1 ]
机构
[1] Fuzhou Univ, Fuzhou, Peoples R China
关键词
federated learning; gradient boosting decision tree; differential privacy; security;
D O I
10.1145/3590003.3590051
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning (FL) is a novel machine learning framework in which machine learning models are built jointly by multiple parties. We investigate the privacy preservation of XGBoost, a gradient boosting decision tree (GBDT) model, in the context of FL. While recent work relies on cryptographic schemes to preserve the privacy of model gradients, these methods are computationally expensive. In this paper, we propose an adaptive gradient privacy-preserving algorithm based on differential privacy (DP), which is more computationally efficient. Our algorithm perturbs individual data by computing an adaptive gradient mean per sample and adding appropriate noise during XGBoost training, while still making the perturbed gradient data available. The training accuracy and communication efficiency of the model are guaranteed under the premise of satisfying the definition of DP. We show the proposed algorithm outperforms other DP methods in terms of prediction accuracy and approaches the lossless federated XGBoost model while being more efficient.
引用
收藏
页码:277 / 282
页数:6
相关论文
共 50 条
  • [41] Privacy-Preserving and Reliable Distributed Federated Learning
    Dong, Yipeng
    Zhang, Lei
    Xu, Lin
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2023, PT I, 2024, 14487 : 130 - 149
  • [42] Measuring Contributions in Privacy-Preserving Federated Learning
    Pejo, Balazs
    Biczok, Gergely
    Acs, Gergely
    ERCIM NEWS, 2021, (126): : 35 - 36
  • [43] A Privacy-Preserving and Verifiable Federated Learning Scheme
    Zhang, Xianglong
    Fu, Anmin
    Wang, Huaqun
    Zhou, Chunyi
    Chen, Zhenzhu
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [44] PRIVACY-PRESERVING SERVICES USING FEDERATED LEARNING
    Taylor, Paul
    Kiss, Stephanie
    Gullon, Lucy
    Yearling, David
    Journal of the Institute of Telecommunications Professionals, 2022, 16 : 16 - 22
  • [45] A Communication-Efficient, Privacy-Preserving Federated Learning Algorithm Based on Two-Stage Gradient Pruning and Differentiated Differential Privacy
    Li, Yong
    Du, Wei
    Han, Liquan
    Zhang, Zhenjian
    Liu, Tongtong
    SENSORS, 2023, 23 (23)
  • [46] Privacy-Preserving Robust Federated Learning with Distributed Differential Privacy
    Wang, Fayao
    He, Yuanyuan
    Guo, Yunchuan
    Li, Peizhi
    Wei, Xinyu
    2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 598 - 605
  • [47] Privacy-preserving federated discovery of DNA motifs with differential privacy
    Chen, Yao
    Gan, Wensheng
    Huang, Gengsen
    Wu, Yongdong
    Yu, Philip S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [48] Privet: A Privacy-Preserving Vertical Federated Learning Service for Gradient Boosted Decision Tables
    Zheng Y.
    Xu S.
    Wang S.
    Gao Y.
    Hua Z.
    IEEE Transactions on Services Computing, 2023, 16 (05): : 3604 - 3620
  • [49] Privacy-Preserving Federated Learning for Industrial Edge Computing via Hybrid Differential Privacy and Adaptive Compression
    Jiang, Bin
    Li, Jianqiang
    Wang, Huihui
    Song, Houbing
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 1136 - 1144
  • [50] PASTEL: Privacy-Preserving Federated Learning in Edge Computing
    Elhattab, Fatima
    Bouchenak, Sara
    Boscher, Cedric
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2023, 7 (04):