A Communication-Efficient, Privacy-Preserving Federated Learning Algorithm Based on Two-Stage Gradient Pruning and Differentiated Differential Privacy

被引:1
|
作者
Li, Yong [1 ,2 ,3 ]
Du, Wei [1 ]
Han, Liquan [1 ]
Zhang, Zhenjian [1 ]
Liu, Tongtong [1 ]
机构
[1] Changchun Univ Technol, Sch Comp Sci & Engn, Changchun 130012, Peoples R China
[2] Changchun Univ Technol, AI Res Inst, Changchun 130012, Peoples R China
[3] Jilin Univ, Sch Comp Sci & Technol, Changchun 130012, Peoples R China
关键词
differentiated differential privacy; federated learning; gradient pruning; privacy preserving;
D O I
10.3390/s23239305
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
There are several unsolved problems in federated learning, such as the security concerns and communication costs associated with it. Differential privacy (DP) offers effective privacy protection by introducing noise to parameters based on rigorous privacy definitions. However, excessive noise addition can potentially compromise the accuracy of the model. Another challenge in federated learning is the issue of high communication costs. Training large-scale federated models can be slow and expensive in terms of communication resources. To address this, various model pruning algorithms have been proposed. To address these challenges, this paper introduces a communication-efficient, privacy-preserving FL algorithm based on two-stage gradient pruning and differentiated differential privacy, named IsmDP-FL. The algorithm leverages a two-stage approach, incorporating gradient pruning and differentiated differential privacy. In the first stage, the trained model is subject to gradient pruning, followed by the addition of differential privacy to the important parameters selected after pruning. Non-important parameters are pruned by a certain ratio, and differentiated differential privacy is applied to the remaining parameters in each network layer. In the second stage, gradient pruning is performed during the upload to the server for aggregation, and the final result is returned to the client to complete the federated learning process. Extensive experiments demonstrate that the proposed method ensures a high communication efficiency, maintains the model privacy, and reduces the unnecessary use of the privacy budget.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Communication-Efficient Personalized Federated Learning With Privacy-Preserving
    Wang, Qian
    Chen, Siguang
    Wu, Meng
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (02): : 2374 - 2388
  • [2] Communication-Efficient and Privacy-Preserving Aggregation in Federated Learning With Adaptability
    Sun, Xuehua
    Yuan, Zengsen
    Kong, Xianguang
    Xue, Liang
    He, Lang
    Lin, Ying
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (15): : 26430 - 26443
  • [3] Communication-Efficient and Privacy-Preserving Verifiable Aggregation for Federated Learning
    Peng, Kaixin
    Shen, Xiaoying
    Gao, Le
    Wang, Baocang
    Lu, Yichao
    ENTROPY, 2023, 25 (08)
  • [4] Privacy-preserving and communication-efficient federated learning in Internet of Things
    Fang, Chen
    Guo, Yuanbo
    Hu, Yongjin
    Ma, Bowen
    Feng, Li
    Yin, Anqi
    COMPUTERS & SECURITY, 2021, 103 (103)
  • [5] FLCP: federated learning framework with communication-efficient and privacy-preserving
    Yang, Wei
    Yang, Yuan
    Xi, Yingjie
    Zhang, Hailong
    Xiang, Wei
    APPLIED INTELLIGENCE, 2024, 54 (9-10) : 6816 - 6835
  • [6] Communication-Efficient and Privacy-Preserving Feature-based Federated Transfer Learning
    Wang, Feng
    Gursoy, M. Cenk
    Velipasalar, Senem
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 3875 - 3880
  • [7] Privacy-Preserving Federated Learning based on Differential Privacy and Momentum Gradient Descent
    Weng, Shangyin
    Zhang, Lei
    Feng, Daquan
    Feng, Chenyuan
    Wang, Ruiyu
    Klaine, Paulo Valente
    Imran, Muhammad Ali
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [8] Privacy-Preserving and Communication-Efficient Energy Prediction Scheme Based on Federated Learning for Smart Grids
    Badr, Mahmoud M.
    Mahmoud, Mohamed M. E. A.
    Fang, Yuguang
    Abdulaal, Mohammed
    Aljohani, Abdulah Jeza
    Alasmary, Waleed
    Ibrahem, Mohamed I.
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (09) : 7719 - 7736
  • [9] Communication-Efficient and Privacy-Preserving Federated Learning via Joint Knowledge Distillation and Differential Privacy in Bandwidth-Constrained Networks
    Gad, Gad
    Gad, Eyad
    Fadlullah, Zubair Md
    Fouda, Mostafa M.
    Kato, Nei
    IEEE Transactions on Vehicular Technology, 2024, 73 (11) : 17586 - 17601
  • [10] Communication-Efficient Privacy-Preserving Clustering
    Jagannathan, Geetha
    Pillaipakkamnatt, Krishnan
    Wright, Rebecca N.
    Umano, Daryl
    TRANSACTIONS ON DATA PRIVACY, 2010, 3 (01) : 2 - 26