Communication-Efficient and Privacy-Preserving Verifiable Aggregation for Federated Learning

被引:1
|
作者
Peng, Kaixin [1 ]
Shen, Xiaoying [2 ,3 ]
Gao, Le [1 ]
Wang, Baocang [2 ]
Lu, Yichao [1 ]
机构
[1] Wuyi Univ, Fac Intelligent Mfg, Jiangmen 529020, Peoples R China
[2] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[3] Hangzhou Normal Univ, Key Lab Cryptog Zhejiang Prov, Hangzhou 311121, Peoples R China
基金
中国国家自然科学基金;
关键词
federated learning; privacy protection; verifiability; homomorphic hash function; SECURE AGGREGATION; SYSTEM;
D O I
10.3390/e25081125
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Federated learning is a distributed machine learning framework, which allows users to save data locally for training without sharing data. Users send the trained local model to the server for aggregation. However, untrusted servers may infer users' private information from the provided data and mistakenly execute aggregation protocols to forge aggregation results. In order to ensure the reliability of the federated learning scheme, we must protect the privacy of users' information and ensure the integrity of the aggregation results. This paper proposes an effective secure aggregation verifiable federated learning scheme, which has both high communication efficiency and privacy protection function. The scheme encrypts the gradients with a single mask technology to securely aggregate gradients, thus ensuring that malicious servers cannot deduce users' private information from the provided data. Then the masked gradients are hashed to verify the aggregation results. The experimental results show that our protocol is more suited for bandwidth-constraint and offline-users scenarios.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Communication-Efficient and Privacy-Preserving Aggregation in Federated Learning With Adaptability
    Sun, Xuehua
    Yuan, Zengsen
    Kong, Xianguang
    Xue, Liang
    He, Lang
    Lin, Ying
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (15): : 26430 - 26443
  • [2] Communication-Efficient Personalized Federated Learning With Privacy-Preserving
    Wang, Qian
    Chen, Siguang
    Wu, Meng
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (02): : 2374 - 2388
  • [3] Efficient Verifiable Protocol for Privacy-Preserving Aggregation in Federated Learning
    Eltaras, Tamer
    Sabry, Farida
    Labda, Wadha
    Alzoubi, Khawla
    Malluhi, Qutaibah
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 2977 - 2990
  • [4] FLCP: federated learning framework with communication-efficient and privacy-preserving
    Yang, Wei
    Yang, Yuan
    Xi, Yingjie
    Zhang, Hailong
    Xiang, Wei
    APPLIED INTELLIGENCE, 2024, 54 (9-10) : 6816 - 6835
  • [5] Privacy-preserving and communication-efficient federated learning in Internet of Things
    Fang, Chen
    Guo, Yuanbo
    Hu, Yongjin
    Ma, Bowen
    Feng, Li
    Yin, Anqi
    COMPUTERS & SECURITY, 2021, 103 (103)
  • [6] An efficient privacy-preserving and verifiable scheme for federated learning
    Yang, Xue
    Ma, Minjie
    Tang, Xiaohu
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 160 : 238 - 250
  • [7] Communication-Efficient and Privacy-Preserving Feature-based Federated Transfer Learning
    Wang, Feng
    Gursoy, M. Cenk
    Velipasalar, Senem
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 3875 - 3880
  • [8] VeriFL: Communication-Efficient and Fast Verifiable Aggregation for Federated Learning
    Guo, Xiaojie
    Liu, Zheli
    Li, Jin
    Gao, Jiqiang
    Hou, Boyu
    Dong, Changyu
    Baker, Thar
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 1736 - 1751
  • [9] ESVFL: Efficient and secure verifiable federated learning with privacy-preserving
    Cai, Jiewang
    Shen, Wenting
    Qin, Jing
    INFORMATION FUSION, 2024, 109
  • [10] VOSA: Verifiable and Oblivious Secure Aggregation for Privacy-Preserving Federated Learning
    Wang, Yong
    Zhang, Aiqing
    Wu, Shu
    Yu, Shui
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (05) : 3601 - 3616