Communication-Efficient and Privacy-Preserving Feature-based Federated Transfer Learning

被引:0
|
作者
Wang, Feng [1 ]
Gursoy, M. Cenk [1 ]
Velipasalar, Senem [1 ]
机构
[1] Syracuse Univ, Dept Elect Engn & Comp Sci, Syracuse, NY 13244 USA
关键词
Federated learning; transfer learning; wireless communication; computer vision;
D O I
10.1109/GLOBECOM48099.2022.10000612
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning has attracted growing interest as it preserves the clients' privacy. As a variant of federated learning, federated transfer learning utilizes the knowledge from similar tasks and thus has also been intensively studied. However, due to the limited radio spectrum, the communication efficiency of federated learning via wireless links is critical since some tasks may require thousands of Terabytes of uplink payload. In order to improve the communication efficiency, we in this paper propose the feature-based federated transfer learning as an innovative approach to reduce the uplink payload by more than five orders of magnitude compared to that of existing approaches. We first introduce the system design in which the extracted features and outputs are uploaded instead of parameter updates, and then determine the required payload with this approach and provide comparisons with the existing approaches. Subsequently, we analyze the random shuffling scheme that preserves the clients' privacy. Finally, we evaluate the performance of the proposed learning scheme via experiments on an image classification task to show its effectiveness.(1)
引用
收藏
页码:3875 / 3880
页数:6
相关论文
共 50 条
  • [1] Communication-Efficient Personalized Federated Learning With Privacy-Preserving
    Wang, Qian
    Chen, Siguang
    Wu, Meng
    [J]. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (02): : 2374 - 2388
  • [2] Communication-Efficient and Privacy-Preserving Aggregation in Federated Learning With Adaptability
    Sun, Xuehua
    Yuan, Zengsen
    Kong, Xianguang
    Xue, Liang
    He, Lang
    Lin, Ying
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (15): : 26430 - 26443
  • [3] Communication-Efficient and Privacy-Preserving Verifiable Aggregation for Federated Learning
    Peng, Kaixin
    Shen, Xiaoying
    Gao, Le
    Wang, Baocang
    Lu, Yichao
    [J]. ENTROPY, 2023, 25 (08)
  • [4] Privacy-preserving and communication-efficient federated learning in Internet of Things
    Fang, Chen
    Guo, Yuanbo
    Hu, Yongjin
    Ma, Bowen
    Feng, Li
    Yin, Anqi
    [J]. COMPUTERS & SECURITY, 2021, 103
  • [5] FLCP: federated learning framework with communication-efficient and privacy-preserving
    Yang, Wei
    Yang, Yuan
    Xi, Yingjie
    Zhang, Hailong
    Xiang, Wei
    [J]. APPLIED INTELLIGENCE, 2024, 54 (9-10) : 6816 - 6835
  • [6] Privacy-Preserving and Communication-Efficient Energy Prediction Scheme Based on Federated Learning for Smart Grids
    Badr, Mahmoud M.
    Mahmoud, Mohamed M. E. A.
    Fang, Yuguang
    Abdulaal, Mohammed
    Aljohani, Abdulah Jeza
    Alasmary, Waleed
    Ibrahem, Mohamed I.
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (09) : 7719 - 7736
  • [7] Communication-efficient and privacy-preserving large-scale federated learning counteracting heterogeneity
    Zhou, Xingcai
    Yang, Guang
    [J]. INFORMATION SCIENCES, 2024, 661
  • [8] FedNew: A Communication-Efficient and Privacy-Preserving Newton-Type Method for Federated Learning
    Elgabli, Anis
    Issaid, Chaouki B.
    Bedi, Amrit S.
    Rajawat, Ketan
    Bennis, Mehdi
    Aggarwal, Vaneet
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [9] Privacy-Preserving Communication-Efficient Federated Multi-Armed Bandits
    Li, Tan
    Song, Linqi
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (03) : 773 - 787
  • [10] Communication-Efficient Privacy-Preserving Clustering
    Jagannathan, Geetha
    Pillaipakkamnatt, Krishnan
    Wright, Rebecca N.
    Umano, Daryl
    [J]. TRANSACTIONS ON DATA PRIVACY, 2010, 3 (01) : 2 - 26