VOSA: Verifiable and Oblivious Secure Aggregation for Privacy-Preserving Federated Learning

被引:9
|
作者
Wang, Yong [1 ]
Zhang, Aiqing [1 ]
Wu, Shu [2 ]
Yu, Shui [3 ]
机构
[1] Anhui Normal Univ, Sch Phys & Elect Informat, Anhui Prov Engn Lab Informat Fus & Control Intell, Wuhu 241002, Anhui, Peoples R China
[2] West Anhui Univ, Sch Elect & Informat Engn, Luan 237000, Anhui, Peoples R China
[3] Univ Technol Sydney, Sch Comp Sci, Sydney, NSW 2007, Australia
基金
中国国家自然科学基金;
关键词
Secure aggregation; federated learning; privacy preservation; data security;
D O I
10.1109/TDSC.2022.3226508
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning has emerged as a promising paradigm by collaboratively training a global model through sharing local gradients without exposing raw data. However, the shared gradients pose a threat to privacy leakage of local data. The central server may forge the aggregated results. Besides, it is common that resource-constrained devices drop out in federated learning. To solve these problems, the existing solutions consider either only efficiency, or privacy preservation. It is still a challenge to design a verifiable and lightweight secure aggregation with drop-out resilience for large-scale federated learning. In this article, we propose VOSA, an efficient verifiable and oblivious secure aggregation protocol for privacy-preserving federated learning. We exploit aggregator oblivious encryption to efficiently mask users' local gradients. The central server performs aggregation on the obscured gradients without revealing the privacy of local data. Meanwhile, each user can efficiently verify the correctness of the aggregated results. Moreover, VOSA adopts a dynamic group management mechanism to tolerate users' dropping out with no impact on their participation in future learning process. Security analysis shows that the VOSA can guarantee the security requirements of privacy-preserving federated learning. The extensive experimental evaluations conducted on real-world datasets demonstrate the practical performance of the proposed VOSA with high efficiency.
引用
下载
收藏
页码:3601 / 3616
页数:16
相关论文
共 50 条
  • [1] On the Security of Verifiable and Oblivious Secure Aggregation for Privacy-Preserving Federated Learning
    Wu, Jiahui
    Zhang, Weizhe
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (05) : 4324 - 4326
  • [2] SVCA: Secure and Verifiable Chained Aggregation for Privacy-Preserving Federated Learning
    Xia, Yuanjun
    Liu, Yining
    Dong, Shi
    Li, Meng
    Guo, Cheng
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (10): : 18351 - 18365
  • [3] ESVFL: Efficient and secure verifiable federated learning with privacy-preserving
    Cai J.
    Shen W.
    Qin J.
    Information Fusion, 2024, 109
  • [4] Efficient Verifiable Protocol for Privacy-Preserving Aggregation in Federated Learning
    Eltaras, Tamer
    Sabry, Farida
    Labda, Wadha
    Alzoubi, Khawla
    Malluhi, Qutaibah
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 2977 - 2990
  • [5] Fast Secure Aggregation for Privacy-Preserving Federated Learning
    Liu, Yanjun
    Qian, Xinyuan
    Li, Hongwei
    Hao, Meng
    Guo, Song
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 3017 - 3022
  • [6] DEVA: Decentralized, Verifiable Secure Aggregation for Privacy-Preserving Learning
    Tsaloli, Georgia
    Liang, Bei
    Brunetta, Carlo
    Banegas, Gustavo
    Mitrokotsa, Aikaterini
    INFORMATION SECURITY (ISC 2021), 2021, 13118 : 296 - 319
  • [7] Verifiable Federated Learning With Privacy-Preserving Data Aggregation for Consumer Electronics
    Xie, Haoran
    Wang, Yujue
    Ding, Yong
    Yang, Changsong
    Zheng, Haibin
    Qin, Bo
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 2696 - 2707
  • [8] Communication-Efficient and Privacy-Preserving Verifiable Aggregation for Federated Learning
    Peng, Kaixin
    Shen, Xiaoying
    Gao, Le
    Wang, Baocang
    Lu, Yichao
    ENTROPY, 2023, 25 (08)
  • [9] TAPFed: Threshold Secure Aggregation for Privacy-Preserving Federated Learning
    Xu, Runhua
    Li, Bo
    Li, Chao
    Joshi, James B. D.
    Ma, Shuai
    Li, Jianxin
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (05) : 4309 - 4323
  • [10] A Privacy-Preserving and Verifiable Federated Learning Scheme
    Zhang, Xianglong
    Fu, Anmin
    Wang, Huaqun
    Zhou, Chunyi
    Chen, Zhenzhu
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,