Communication-Efficient and Privacy-Preserving Verifiable Aggregation for Federated Learning

被引:1
|
作者
Peng, Kaixin [1 ]
Shen, Xiaoying [2 ,3 ]
Gao, Le [1 ]
Wang, Baocang [2 ]
Lu, Yichao [1 ]
机构
[1] Wuyi Univ, Fac Intelligent Mfg, Jiangmen 529020, Peoples R China
[2] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[3] Hangzhou Normal Univ, Key Lab Cryptog Zhejiang Prov, Hangzhou 311121, Peoples R China
基金
中国国家自然科学基金;
关键词
federated learning; privacy protection; verifiability; homomorphic hash function; SECURE AGGREGATION; SYSTEM;
D O I
10.3390/e25081125
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Federated learning is a distributed machine learning framework, which allows users to save data locally for training without sharing data. Users send the trained local model to the server for aggregation. However, untrusted servers may infer users' private information from the provided data and mistakenly execute aggregation protocols to forge aggregation results. In order to ensure the reliability of the federated learning scheme, we must protect the privacy of users' information and ensure the integrity of the aggregation results. This paper proposes an effective secure aggregation verifiable federated learning scheme, which has both high communication efficiency and privacy protection function. The scheme encrypts the gradients with a single mask technology to securely aggregate gradients, thus ensuring that malicious servers cannot deduce users' private information from the provided data. Then the masked gradients are hashed to verify the aggregation results. The experimental results show that our protocol is more suited for bandwidth-constraint and offline-users scenarios.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Privacy-Preserving Decentralized Aggregation for Federated Learning
    Jeon, Beomyeol
    Ferdous, S. M.
    Rahmant, Muntasir Raihan
    Walid, Anwar
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM WKSHPS 2021), 2021,
  • [32] Communication-Efficient Privacy-Preserving Federated Learning via Knowledge Distillation for Human Activity Recognition Systems
    Gad, Gad
    Fadlullah, Zubair Md
    Rabie, Khaled
    Fouda, Mostafa M.
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 1572 - 1578
  • [33] Improved Privacy-Preserving Aggregation for Federated Learning
    Li, Yu
    Han, Yiliang
    Zhou, Tanping
    Xie, Huiyu
    Wu, Xuguang
    Song, Chaoyue
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 272 - 276
  • [34] SAEV: Secure Aggregation and Efficient Verification for Privacy-Preserving Federated Learning
    Wang, Junkai
    Wang, Rong
    Xiong, Ling
    Xiong, Neal
    Liu, Zhicai
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (24): : 39681 - 39696
  • [35] An Efficient Federated Learning Framework for Privacy-Preserving Data Aggregation in IoT
    Shi, Rongquan
    Wei, Lifei
    Zhang, Lei
    2023 20TH ANNUAL INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY AND TRUST, PST, 2023, : 385 - 391
  • [36] EPPDA: An Efficient Privacy-Preserving Data Aggregation Federated Learning Scheme
    Song, Jingcheng
    Wang, Weizheng
    Gadekallu, Thippa Reddy
    Cao, Jianyu
    Liu, Yining
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (05): : 3047 - 3057
  • [37] VPPFL: Verifiable Privacy-Preserving Federated Learning in Cloud Environment
    Wang, Huiyong
    Yang, Tengfei
    Ding, Yong
    Tang, Shijie
    Wang, Yujue
    IEEE ACCESS, 2024, 12 : 151998 - 152008
  • [38] Non-interactive verifiable privacy-preserving federated learning
    Xu, Yi
    Peng, Changgen
    Tan, Weijie
    Tian, Youliang
    Ma, Minyao
    Niu, Kun
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 128 : 365 - 380
  • [39] Privacy-Preserving and Verifiable Federated Learning Framework for Edge Computing
    Zhou, Hao
    Yang, Geng
    Huang, Yuxian
    Dai, Hua
    Xiang, Yang
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 565 - 580
  • [40] FVFL: A Flexible and Verifiable Privacy-Preserving Federated Learning Scheme
    Wang, Gang
    Zhou, Li
    Li, Qingming
    Yan, Xiaoran
    Liu, Ximeng
    Wu, Yuncheng
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (13): : 23268 - 23281