An Adaptive Gradient Privacy-Preserving Algorithm for Federated XGBoost

被引:1
|
作者
Cai, Hongyi [1 ]
Cai, Jianping [1 ]
Sun, Lan [1 ]
机构
[1] Fuzhou Univ, Fuzhou, Peoples R China
关键词
federated learning; gradient boosting decision tree; differential privacy; security;
D O I
10.1145/3590003.3590051
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning (FL) is a novel machine learning framework in which machine learning models are built jointly by multiple parties. We investigate the privacy preservation of XGBoost, a gradient boosting decision tree (GBDT) model, in the context of FL. While recent work relies on cryptographic schemes to preserve the privacy of model gradients, these methods are computationally expensive. In this paper, we propose an adaptive gradient privacy-preserving algorithm based on differential privacy (DP), which is more computationally efficient. Our algorithm perturbs individual data by computing an adaptive gradient mean per sample and adding appropriate noise during XGBoost training, while still making the perturbed gradient data available. The training accuracy and communication efficiency of the model are guaranteed under the premise of satisfying the definition of DP. We show the proposed algorithm outperforms other DP methods in terms of prediction accuracy and approaches the lossless federated XGBoost model while being more efficient.
引用
收藏
页码:277 / 282
页数:6
相关论文
共 50 条
  • [21] Privacy-Preserving Federated Brain Tumour Segmentation
    Li, Wenqi
    Milletari, Fausto
    Xu, Daguang
    Rieke, Nicola
    Hancox, Jonny
    Zhu, Wentao
    Baust, Maximilian
    Cheng, Yan
    Ourselin, Sebastien
    Cardoso, M. Jorge
    Feng, Andrew
    MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2019), 2019, 11861 : 133 - 141
  • [22] Privacy-Preserving Federated Learning With Resource-Adaptive Compression for Edge Devices
    Hidayat, Muhammad Ayat
    Nakamura, Yugo
    Arakawa, Yutaka
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 13180 - 13198
  • [23] Privacy-Preserving Federated Singular Value Decomposition
    Liu, Bowen
    Pejo, Balazs
    Tang, Qiang
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [24] Privacy-preserving Heterogeneous Federated Transfer Learning
    Gao, Dashan
    Liu, Yang
    Huang, Anbu
    Ju, Ce
    Yu, Han
    Yang, Qiang
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2552 - 2559
  • [25] A Personalized Privacy-Preserving Scheme for Federated Learning
    Li, Zhenyu
    2022 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, BIG DATA AND ALGORITHMS (EEBDA), 2022, : 1352 - 1356
  • [26] Privacy-preserving federated learning for radiotherapy applications
    Hayati, H.
    Heijmans, S.
    Persoon, L.
    Murguia, C.
    van de Wouw, N.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S238 - S240
  • [27] POSTER: Privacy-preserving Federated Active Learning
    Kurniawan, Hendra
    Mambo, Masahiro
    SCIENCE OF CYBER SECURITY, SCISEC 2022 WORKSHOPS, 2022, 1680 : 223 - 226
  • [28] AddShare: A Privacy-Preserving Approach for Federated Learning
    Asare, Bernard Atiemo
    Branco, Paula
    Kiringa, Iluju
    Yeap, Tet
    COMPUTER SECURITY. ESORICS 2023 INTERNATIONAL WORKSHOPS, PT I, 2024, 14398 : 299 - 309
  • [29] Privacy-Preserving Hierarchical Federated Recommendation Systems
    Chen, Yucheng
    Feng, Chenyuan
    Feng, Daquan
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (05) : 1312 - 1316
  • [30] PPFLV: privacy-preserving federated learning with verifiability
    Zhou, Qun
    Shen, Wenting
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (09): : 12727 - 12743