Finding maximal exact matches in graphs

被引:0
|
作者
Rizzo, Nicola [1 ]
Caceres, Manuel [1 ]
Makinen, Veli [1 ]
机构
[1] Univ Helsinki, Dept Comp Sci, Pietari Kalmin katu 5,POB 68, Helsinki 00014, Finland
基金
欧盟地平线“2020”;
关键词
Sequence to graph alignment; Bidirectional BWT; r-index; Suffix tree; Founder graphs; SEARCH; CONSTRUCTION; RETRIEVAL; SEQUENCE; TREE;
D O I
10.1186/s13015-024-00255-5
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundWe study the problem of finding maximal exact matches (MEMs) between a query string Q and a labeled graph G. MEMs are an important class of seeds, often used in seed-chain-extend type of practical alignment methods because of their strong connections to classical metrics. A principled way to speed up chaining is to limit the number of MEMs by considering only MEMs of length at least kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa$$\end{document} (kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa$$\end{document}-MEMs). However, on arbitrary input graphs, the problem of finding MEMs cannot be solved in truly sub-quadratic time under SETH (Equi et al., TALG 2023) even on acyclic graphs.ResultsIn this paper we show an O(n center dot L center dot dL-1+m+M kappa,L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\cdot L \cdot d<^>{L-1} + m + M_{\kappa ,L})$$\end{document}-time algorithm finding all kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa$$\end{document}-MEMs between Q and G spanning exactly L nodes in G, where n is the total length of node labels, d is the maximum degree of a node in G, m=|Q|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m = |Q|$$\end{document}, and M kappa,L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\kappa ,L}$$\end{document} is the number of output MEMs. We use this algorithm to develop a kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa$$\end{document}-MEM finding solution on indexable Elastic Founder Graphs (Equi et al. , Algorithmica 2022) running in time O(nH2+m+M kappa)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(nH<^>2 + m + M_\kappa )$$\end{document}, where H is the maximum number of nodes in a block, and M kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\kappa$$\end{document} is the total number of kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa$$\end{document}-MEMs. Our results generalize to the analysis of multiple query strings (MEMs between G and any of the strings). Additionally, we provide some experimental results showing that the number of graph MEMs is an order of magnitude smaller than the number of string MEMs of the corresponding concatenated collection.ConclusionsWe show that seed-chain-extend type of alignment methods can be implemented on top of indexable Elastic Founder Graphs by providing an efficient way to produce the seeds between a set of queries and the graph. The code is available in https://github.com/algbio/efg-mems.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Exact Algorithms for Finding Longest Cycles in Claw-Free Graphs
    Hajo Broersma
    Fedor V. Fomin
    Pim van ’t Hof
    Daniël Paulusma
    Algorithmica, 2013, 65 : 129 - 145
  • [32] Maximal graphs and graphs with maximal spectral radius
    Olesky, DD
    Roy, A
    van den Driessche, P
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 346 (1-3) : 109 - 130
  • [33] SST: an algorithm for finding near-exact sequence matches in time proportional to the logarithm of the database size
    Giladi, E
    Walker, MG
    Wang, JZ
    Volkmuth, W
    BIOINFORMATICS, 2002, 18 (06) : 873 - 879
  • [34] Exact word matches in rice pseudomolecules
    Liu, Shaolin
    Tinker, Nicholas A.
    Mather, Diane E.
    GENOME, 2006, 49 (08) : 1047 - 1051
  • [35] Exact sequence matches in genomic studies
    Sheinman, M.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2023, 31 (06): : 739 - 756
  • [36] FINDING APPROXIMATE MATCHES IN LARGE LEXICONS
    ZOBEL, J
    DART, P
    SOFTWARE-PRACTICE & EXPERIENCE, 1995, 25 (03): : 331 - 345
  • [37] A LINEAR ALGORITHM FOR FINDING HAMILTONIAN CYCLES IN 4-CONNECTED MAXIMAL PLANAR GRAPHS
    ASANO, T
    KIKUCHI, S
    SAITO, N
    DISCRETE APPLIED MATHEMATICS, 1984, 7 (01) : 1 - 15
  • [38] Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches
    Almutairy, Meznah
    Torng, Eric
    PLOS ONE, 2018, 13 (02):
  • [39] An Evolutionary Distance Based on Maximal Unique Matches
    Guyon, Frederic
    Guenoche, Alain
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (03) : 385 - 397
  • [40] EXACT GRAPHS
    SCHNABEL, R
    SPENGLER, U
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1994, 64 : 15 - 31