Exact Algorithms for Finding Longest Cycles in Claw-Free Graphs

被引:0
|
作者
Hajo Broersma
Fedor V. Fomin
Pim van ’t Hof
Daniël Paulusma
机构
[1] Durham University,School of Engineering and Computing Sciences, Science Laboratories
[2] University of Bergen,Department of Informatics
来源
Algorithmica | 2013年 / 65卷
关键词
Connected Graph; Travel Salesman Problem; Exact Algorithm; Polynomial Space; Longe Cycle;
D O I
暂无
中图分类号
学科分类号
摘要
The Hamiltonian Cycle problem is the problem of deciding whether an n-vertex graph G has a cycle passing through all vertices of G. This problem is a classic NP-complete problem. Finding an exact algorithm that solves it in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal {O}}^{*}(\alpha^{n})$\end{document} time for some constant α<2 was a notorious open problem until very recently, when Björklund presented a randomized algorithm that uses \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal {O}}^{*}(1.657^{n})$\end{document} time and polynomial space. The Longest Cycle problem, in which the task is to find a cycle of maximum length, is a natural generalization of the Hamiltonian Cycle problem. For a claw-free graph G, finding a longest cycle is equivalent to finding a closed trail (i.e., a connected even subgraph, possibly consisting of a single vertex) that dominates the largest number of edges of some associated graph H. Using this translation we obtain two deterministic algorithms that solve the Longest Cycle problem, and consequently the Hamiltonian Cycle problem, for claw-free graphs: one algorithm that uses \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal {O}}^{*}(1.6818^{n})$\end{document} time and exponential space, and one algorithm that uses \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal {O}}^{*}(1.8878^{n})$\end{document} time and polynomial space.
引用
收藏
页码:129 / 145
页数:16
相关论文
共 50 条