Finding maximal exact matches in graphs

被引:0
|
作者
Rizzo, Nicola [1 ]
Caceres, Manuel [1 ]
Makinen, Veli [1 ]
机构
[1] Univ Helsinki, Dept Comp Sci, Pietari Kalmin katu 5,POB 68, Helsinki 00014, Finland
基金
欧盟地平线“2020”;
关键词
Sequence to graph alignment; Bidirectional BWT; r-index; Suffix tree; Founder graphs; SEARCH; CONSTRUCTION; RETRIEVAL; SEQUENCE; TREE;
D O I
10.1186/s13015-024-00255-5
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundWe study the problem of finding maximal exact matches (MEMs) between a query string Q and a labeled graph G. MEMs are an important class of seeds, often used in seed-chain-extend type of practical alignment methods because of their strong connections to classical metrics. A principled way to speed up chaining is to limit the number of MEMs by considering only MEMs of length at least kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa$$\end{document} (kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa$$\end{document}-MEMs). However, on arbitrary input graphs, the problem of finding MEMs cannot be solved in truly sub-quadratic time under SETH (Equi et al., TALG 2023) even on acyclic graphs.ResultsIn this paper we show an O(n center dot L center dot dL-1+m+M kappa,L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\cdot L \cdot d<^>{L-1} + m + M_{\kappa ,L})$$\end{document}-time algorithm finding all kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa$$\end{document}-MEMs between Q and G spanning exactly L nodes in G, where n is the total length of node labels, d is the maximum degree of a node in G, m=|Q|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m = |Q|$$\end{document}, and M kappa,L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\kappa ,L}$$\end{document} is the number of output MEMs. We use this algorithm to develop a kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa$$\end{document}-MEM finding solution on indexable Elastic Founder Graphs (Equi et al. , Algorithmica 2022) running in time O(nH2+m+M kappa)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(nH<^>2 + m + M_\kappa )$$\end{document}, where H is the maximum number of nodes in a block, and M kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\kappa$$\end{document} is the total number of kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa$$\end{document}-MEMs. Our results generalize to the analysis of multiple query strings (MEMs between G and any of the strings). Additionally, we provide some experimental results showing that the number of graph MEMs is an order of magnitude smaller than the number of string MEMs of the corresponding concatenated collection.ConclusionsWe show that seed-chain-extend type of alignment methods can be implemented on top of indexable Elastic Founder Graphs by providing an efficient way to produce the seeds between a set of queries and the graph. The code is available in https://github.com/algbio/efg-mems.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] An Efficient PSO-Based Algorithm for Finding Maximal Exact Match in Large DNA Sequences
    Daas, Mohamed Skander
    Kenidra, Billel
    Bouanaka, Hamza
    Chikhi, Salim
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2023, 22 (04)
  • [42] Exact Algorithms for Finding Fixed-Length Cycles in Edge-Weighted Graphs
    Lewis, R.
    Carroll, F.
    2022 31ST INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS (ICCCN 2022), 2022,
  • [43] Annotating large genomes with exact word matches
    Healy, J
    Thomas, EE
    Schwartz, JT
    Wigler, M
    GENOME RESEARCH, 2003, 13 (10) : 2306 - 2315
  • [44] Finding exact and maximum occurrences of protein complexes in protein-protein interaction graphs
    Fertin, G
    Rizzi, R
    Vialette, S
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2005, PROCEEDINGS, 2005, 3618 : 328 - 339
  • [45] ON FINDING A MAXIMAL ASSIGNMENT
    YASPAN, A
    OPERATIONS RESEARCH, 1966, 14 (04) : 646 - &
  • [46] INTERIOR GRAPHS OF MAXIMAL OUTERPLANE GRAPHS
    HEDETNIEMI, SM
    PROSKUROWSKI, A
    SYSLO, MM
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (02) : 156 - 167
  • [47] Reporting exact and approximate regular expression matches
    Myers, EW
    Oliva, P
    Guimaraes, K
    COMBINATORIAL PATTERN MATCHING, 1998, 1448 : 91 - 103
  • [48] FINDING A CAREER IN GERONTOLOGY THAT MATCHES YOUR PERSONALITY
    Ruiz, S.
    GERONTOLOGIST, 2011, 51 : 406 - 406
  • [49] Hardware acceleration of the novel two dimensional Burrows-Wheeler Aligner algorithm with maximal exact matches seed extension kernel
    Taheri, Mahdi
    Ansari, Mohammad Saeed
    Magierowski, Sebastian
    Mahani, Ali
    IET CIRCUITS DEVICES & SYSTEMS, 2021, 15 (02) : 94 - 103
  • [50] EFFICIENT PARALLEL ALGORITHMS FOR FINDING MAXIMAL CLIQUES, CLIQUE TREES, AND MINIMUM COLORING ON CHORDAL GRAPHS
    HO, CW
    LEE, RCT
    INFORMATION PROCESSING LETTERS, 1988, 28 (06) : 301 - 309