Machine learning coarse-grained potentials of protein thermodynamics

被引:20
|
作者
Majewski, Maciej [1 ,2 ]
Perez, Adria [1 ,2 ]
Tholke, Philipp [1 ]
Doerr, Stefan [2 ]
Charron, Nicholas E. [3 ,4 ,5 ]
Giorgino, Toni [6 ]
Husic, Brooke E. [7 ,8 ,9 ,10 ]
Clementi, Cecilia [3 ,4 ,5 ,11 ]
Noe, Frank [5 ,7 ,11 ,12 ]
De Fabritiis, Gianni [1 ,2 ,13 ]
机构
[1] Univ Pompeu Fabra, Sci Computat Lab, Biomed Res Pk PRBB,Carrer Dr Aiguader 88, Barcelona 08003, Spain
[2] Acellera Labs, Doctor Trueta 183, Barcelona 08005, Spain
[3] Rice Univ, Dept Phys, Houston, TX 77005 USA
[4] Rice Univ, Ctr Theoret Biol Phys, Houston, TX 77005 USA
[5] FU Berlin, Dept Phys, Arnimallee 12, D-14195 Berlin, Germany
[6] Natl Res Council CNR IBF, Inst Biophys, I-20133 Milan, Italy
[7] FU Berlin, Dept Mathe & Comp Sci, Arnimallee 12, D-14195 Berlin, Germany
[8] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08540 USA
[9] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08540 USA
[10] Princeton Univ, Ctr Phys Biol Funct, Princeton, NJ 08540 USA
[11] Rice Univ, Dept Chem, Houston, TX 77005 USA
[12] Microsoft Res AI4Sci, Karl Liebknecht Str 32, D-10178 Berlin, Germany
[13] Inst Catalana Recerca & Estudis Avancats ICR, Passeig Lluis Companys 23, Barcelona 08010, Spain
基金
美国国家卫生研究院; 欧洲研究理事会; 美国国家科学基金会; 欧盟地平线“2020”;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; FORCE-FIELD; STRUCTURE PREDICTION; ENERGY LANDSCAPES; STATE MODELS; PERSPECTIVE; KINETICS;
D O I
10.1038/s41467-023-41343-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular potentials based on artificial neural networks and grounded in statistical mechanics. For training, we build a unique dataset of unbiased all-atom molecular dynamics simulations of approximately 9 ms for twelve different proteins with multiple secondary structure arrangements. The coarse-grained models are capable of accelerating the dynamics by more than three orders of magnitude while preserving the thermodynamics of the systems. Coarse-grained simulations identify relevant structural states in the ensemble with comparable energetics to the all-atom systems. Furthermore, we show that a single coarse-grained potential can integrate all twelve proteins and can capture experimental structural features of mutated proteins. These results indicate that machine learning coarse-grained potentials could provide a feasible approach to simulate and understand protein dynamics.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Quantum coarse-grained entropy and thermodynamics
    Safranek, Dominik
    Deutsch, J. M.
    Aguirre, Anthony
    PHYSICAL REVIEW A, 2019, 99 (01)
  • [12] Predicting Protein-protein Association Rates using Coarse-grained Simulation and Machine Learning
    Xie, Zhong-Ru
    Chen, Jiawen
    Wu, Yinghao
    SCIENTIFIC REPORTS, 2017, 7
  • [13] Integrating Machine Learning in the Coarse-Grained Molecular Simulation of Polymers
    Ricci, Eleonora
    Vergadou, Niki
    JOURNAL OF PHYSICAL CHEMISTRY B, 2023, 127 (11): : 2302 - 2322
  • [14] Coarse-grained Reconfigurable Hardware Accelerator of Machine Learning Classifiers
    Vranjkovic, Vuk
    Struharik, Rastislav
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, (IWSSIP 2016), 2016, : 193 - 196
  • [15] Machine Learning of Coarse-Grained Molecular Dynamics Force Fields
    Wang, Jiang
    Olsson, Simon
    Wehmeyer, Christoph
    Perez, Adria
    Charron, Nicholas E.
    de Fabritiis, Gianni
    Noe, Frank
    Clementi, Cecilia
    ACS CENTRAL SCIENCE, 2019, 5 (05) : 755 - 767
  • [16] Machine learning of coarse-grained molecular dynamics force fields
    Noe, Frank
    Clementi, Cecilia
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [17] Thermodynamics of coarse-grained models of supercooled liquids
    Chandler, D
    Garrahan, JP
    JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (04):
  • [18] Machine-learned coarse-grained potentials for particles with anisotropic shapes and interactions
    Campos-Villalobos, Gerardo
    Subert, Rodolfo
    Giunta, Giuliana
    Dijkstra, Marjolein
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [19] Coarse-grained interaction potentials for anisotropic molecules
    Babadi, M
    Everaers, R
    Ejtehadi, MR
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (17):
  • [20] Coarse-grained interaction potentials for polyaromatic hydrocarbons
    von Lilienfeld, OA
    Andrienko, D
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (05): : 1 - 6