Machine Learning of Coarse-Grained Molecular Dynamics Force Fields

被引:317
|
作者
Wang, Jiang [1 ,2 ]
Olsson, Simon [3 ]
Wehmeyer, Christoph [3 ]
Perez, Adria [4 ]
Charron, Nicholas E. [1 ,5 ]
de Fabritiis, Gianni [4 ,6 ]
Noe, Frank [1 ,2 ,3 ]
Clementi, Cecilia [1 ,2 ,3 ,5 ]
机构
[1] Rice Univ, Ctr Theoret Biol Phys, Houston, TX 77005 USA
[2] Rice Univ, Dept Chem, Houston, TX 77005 USA
[3] Free Univ Berlin, Dept Math & Comp Sci, Arnimallee 6, D-14195 Berlin, Germany
[4] Univ Pompeu Fabra, PRBB, Computat Sci Lab, C Dr Aiguader 88, Barcelona 08003, Spain
[5] Rice Univ, Dept Phys, Houston, TX 77005 USA
[6] ICREA, Passeig Lluis Co 23, Barcelona 08010, Spain
基金
美国国家科学基金会;
关键词
MODEL; SIMULATION; POTENTIALS; PREDICTION; ACCURACY; KINETICS; ROUTE; SCALE;
D O I
10.1021/acscentsci.8b00913
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Atomistic or ab initio molecular dynamics simulations are widely used to predict thermodynamics and kinetics and relate them to molecular structure. A common approach to go beyond the time- and length-scales accessible with such computationally expensive simulations is the definition of coarse-grained molecular models. Existing coarse-graining approaches define an effective interaction potential to match defined properties of high-resolution models or experimental data. In this paper, we reformulate coarse-graining as a supervised machine learning problem. We use statistical learning theory to decompose the coarse-graining error and cross-validation to select and compare the performance of different models. We introduce CGnets, a deep learning approach, that learns coarse-grained free energy functions and can be trained by a force-matching scheme. CGnets maintain all physically relevant invariances and allow one to incorporate prior physics knowledge to avoid sampling of unphysical structures. We show that CGnets can capture all-atom explicit-solvent free energy surfaces with models using only a few coarse-grained beads and no solvent, while classical coarse-graining methods fail to capture crucial features of the free energy surface. Thus, CGnets are able to capture multibody terms that emerge from the dimensionality reduction.
引用
收藏
页码:755 / 767
页数:13
相关论文
共 50 条
  • [1] Machine learning of coarse-grained molecular dynamics force fields
    Noe, Frank
    Clementi, Cecilia
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [2] Ensemble learning of coarse-grained molecular dynamics force fields with a kernel approach
    Wang, Jiang
    Chmiela, Stefan
    Mueller, Klaus-Robert
    Noe, Frank
    Clementi, Cecilia
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (19):
  • [3] Machine Learning Force Fields and Coarse-Grained Variables in Molecular Dynamics: Application to Materials and Biological Systems
    Gkeka, Paraskevi
    Stoltz, Gabriel
    Farimani, Amir Barati
    Belkacemi, Zineb
    Ceriotti, Michele
    Chodera, John D.
    Dinner, Aaron R.
    Ferguson, Andrew L.
    Maillet, Jean-Bernard
    Minoux, Herve
    Peter, Christine
    Pietrucci, Fabio
    Silveira, Ana
    Tkatchenko, Alexandre
    Trstanova, Zofia
    Wiewiora, Rafal
    Lelievre, Tony
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (08) : 4757 - 4775
  • [4] Contrastive Learning of Coarse-Grained Force Fields
    Ding, Xinqiang
    Zhang, Bin
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, : 6334 - 6344
  • [5] Top-Down Machine Learning of Coarse-Grained Protein Force Fields
    Navarro, Carles
    Majewski, Maciej
    De Fabritiis, Gianni
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (21) : 7518 - 7526
  • [6] Learning coarse-grained force fields for fibrogenesis modeling
    Zhang, Ziji
    Kementzidis, Georgios
    Zhang, Peng
    Zhang, Leili
    Kozloski, James
    Hansen, Adam
    Rafailovich, Miriam
    Simon, Marcia
    Deng, Yuefan
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2024, 295
  • [7] Two for One: Diffusion Models and Force Fields for Coarse-Grained Molecular Dynamics
    Arts, Marloes
    Satorras, Victor Garcia
    Huang, Chin-Wei
    Zuegner, Daniel
    Federici, Marco
    Clementi, Cecilia
    Noe, Frank
    Pinsler, Robert
    van den Berg, Rianne
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (18) : 6151 - 6159
  • [8] Why are coarse-grained force fields too fast? A look at dynamics of four coarse-grained polymers
    Depa, Praveen
    Chen, Chunxia
    Maranas, Janna K.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (01):
  • [9] Utilizing Machine Learning for Efficient Parameterization of Coarse Grained Molecular Force Fields
    McDonagh, James L.
    Shkurti, Ardita
    Bray, David J.
    Anderson, Richard L.
    Pyzer-Knapp, Edward O.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (10) : 4278 - 4288
  • [10] Integrating Machine Learning in the Coarse-Grained Molecular Simulation of Polymers
    Ricci, Eleonora
    Vergadou, Niki
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2023, 127 (11): : 2302 - 2322