Machine Learning of Coarse-Grained Molecular Dynamics Force Fields

被引:317
|
作者
Wang, Jiang [1 ,2 ]
Olsson, Simon [3 ]
Wehmeyer, Christoph [3 ]
Perez, Adria [4 ]
Charron, Nicholas E. [1 ,5 ]
de Fabritiis, Gianni [4 ,6 ]
Noe, Frank [1 ,2 ,3 ]
Clementi, Cecilia [1 ,2 ,3 ,5 ]
机构
[1] Rice Univ, Ctr Theoret Biol Phys, Houston, TX 77005 USA
[2] Rice Univ, Dept Chem, Houston, TX 77005 USA
[3] Free Univ Berlin, Dept Math & Comp Sci, Arnimallee 6, D-14195 Berlin, Germany
[4] Univ Pompeu Fabra, PRBB, Computat Sci Lab, C Dr Aiguader 88, Barcelona 08003, Spain
[5] Rice Univ, Dept Phys, Houston, TX 77005 USA
[6] ICREA, Passeig Lluis Co 23, Barcelona 08010, Spain
基金
美国国家科学基金会;
关键词
MODEL; SIMULATION; POTENTIALS; PREDICTION; ACCURACY; KINETICS; ROUTE; SCALE;
D O I
10.1021/acscentsci.8b00913
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Atomistic or ab initio molecular dynamics simulations are widely used to predict thermodynamics and kinetics and relate them to molecular structure. A common approach to go beyond the time- and length-scales accessible with such computationally expensive simulations is the definition of coarse-grained molecular models. Existing coarse-graining approaches define an effective interaction potential to match defined properties of high-resolution models or experimental data. In this paper, we reformulate coarse-graining as a supervised machine learning problem. We use statistical learning theory to decompose the coarse-graining error and cross-validation to select and compare the performance of different models. We introduce CGnets, a deep learning approach, that learns coarse-grained free energy functions and can be trained by a force-matching scheme. CGnets maintain all physically relevant invariances and allow one to incorporate prior physics knowledge to avoid sampling of unphysical structures. We show that CGnets can capture all-atom explicit-solvent free energy surfaces with models using only a few coarse-grained beads and no solvent, while classical coarse-graining methods fail to capture crucial features of the free energy surface. Thus, CGnets are able to capture multibody terms that emerge from the dimensionality reduction.
引用
收藏
页码:755 / 767
页数:13
相关论文
共 50 条
  • [21] Coarse-grained molecular dynamics of tau protein
    Robert-Jimenez, L.
    Figueroa-Gerstenmaier, S.
    Basurto-Islas, G.
    Herrera-Velarde, S.
    REVISTA MEXICANA DE FISICA, 2023, 69 (03)
  • [22] Coarse-grained molecular dynamics simulations of biomolecules
    Takahashi, Ken
    Oda, Takayuki
    Naruse, Keiji
    AIMS BIOPHYSICS, 2014, 1 (01): : 1 - 15
  • [23] Coarse-grained protein molecular dynamics simulations
    Derreumaux, Philippe
    Mousseau, Normand
    JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (02):
  • [24] Anomalous lateral diffusion in lipid bilayers observed by molecular dynamics simulations with atomistic and coarse-grained force fields
    Stachura, Slawomir
    Kneller, Gerald R.
    MOLECULAR SIMULATION, 2014, 40 (1-3) : 245 - 250
  • [25] Investigation of Protein Folding by Coarse-Grained Molecular Dynamics with the UNRES Force Field
    Maisuradze, Gia G.
    Senet, Patrick
    Czaplewski, Cezary
    Liwo, Adam
    Scheraga, Harold A.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (13): : 4471 - 4485
  • [26] Coarse-Grained Molecular Dynamics with Normalizing Flows
    Tamagnone, Samuel
    Laio, Alessandro
    Gabrie, Marylou
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (18) : 7796 - 7805
  • [27] Martini 3: a general purpose force field for coarse-grained molecular dynamics
    Souza, Paulo C. T.
    Alessandri, Riccardo
    Barnoud, Jonathan
    Thallmair, Sebastian
    Faustino, Ignacio
    Grunewald, Fabian
    Patmanidis, Ilias
    Abdizadeh, Haleh
    Bruininks, Bart M. H.
    Wassenaar, Tsjerk A.
    Kroon, Peter C.
    Melcr, Josef
    Nieto, Vincent
    Corradi, Valentina
    Khan, Hanif M.
    Domanski, Jan
    Javanainen, Matti
    Martinez-Seara, Hector
    Reuter, Nathalie
    Best, Robert B.
    Vattulainen, Ilpo
    Monticelli, Luca
    Periole, Xavier
    Tieleman, D. Peter
    de Vries, Alex H.
    Marrink, Siewert J.
    NATURE METHODS, 2021, 18 (04) : 382 - +
  • [28] Martini 3: a general purpose force field for coarse-grained molecular dynamics
    Paulo C. T. Souza
    Riccardo Alessandri
    Jonathan Barnoud
    Sebastian Thallmair
    Ignacio Faustino
    Fabian Grünewald
    Ilias Patmanidis
    Haleh Abdizadeh
    Bart M. H. Bruininks
    Tsjerk A. Wassenaar
    Peter C. Kroon
    Josef Melcr
    Vincent Nieto
    Valentina Corradi
    Hanif M. Khan
    Jan Domański
    Matti Javanainen
    Hector Martinez-Seara
    Nathalie Reuter
    Robert B. Best
    Ilpo Vattulainen
    Luca Monticelli
    Xavier Periole
    D. Peter Tieleman
    Alex H. de Vries
    Siewert J. Marrink
    Nature Methods, 2021, 18 : 382 - 388
  • [29] Machine learning assisted coarse-grained molecular dynamics modeling of meso-scale interfacial fluids
    Ge, Pei
    Zhang, Linfeng
    Lei, Huan
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (06):
  • [30] Machine learning-assisted coarse-grained molecular dynamics for designing highly conductive polymer electrolytes
    Wang, Yanming
    Xie, Tian
    France-Lanord, Arthur
    Berkley, Arthur
    Johnson, Jeremiah
    Shao-Horn, Yang
    Grossman, Jeffrey
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257