Density of subalgebras of Lipschitz functions in metric Sobolev spaces and applications to Wasserstein Sobolev spaces

被引:4
|
作者
Fornasier, Massimo [1 ]
Savare, Giuseppe [2 ,3 ]
Sodini, Giacomo Enrico [1 ]
机构
[1] TUM, Fak Math, Boltzmannstr 3, D-85748 Garching, Germany
[2] Bocconi Univ, Dept Decis Sci, Via Roentgen 1, I-20136 Milan, Italy
[3] Bocconi Univ, BIDSA, Via Roentgen 1, I-20136 Milan, Italy
关键词
Metric Sobolev spaces; Dirichlet forms; Cheeger energy; Kantorovich-Wasserstein distance; Optimal transport; Moreau-Yosida regularization; ENTROPIC MEASURE; DIFFERENTIABILITY; EQUATIONS; GEOMETRY; WEAK;
D O I
10.1016/j.jfa.2023.110153
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a general criterion for the density in energy of suitable subalgebras of Lipschitz functions in the metric Sobolev space H1,p(X, d,m) associated with a positive and finite Borel measure m in a separable and complete metric space (X, d). We then provide a relevant application to the case of the algebra of cylinder functions in the Wasserstein Sobolev space H1,2(P2(M), W2, m) arising from a positive and finite Borel measure m on the Kantorovich-Rubinstein-Wasserstein space (P2(M), W2) of probability measures in a finite dimensional Euclidean space, a complete Riemannian manifold, or a separable Hilbert space M. We will show that such a Sobolev space is always Hilbertian, independently of the choice of the reference measure m so that the resulting Cheeger energy is a Dirichlet form. We will eventually provide an explicit characterization for the corresponding notion of m-Wasserstein gradient, showinguseful calculus rules and its consistency with the tangent bundle and the Gamma-calculus inherited from the Dirichlet form.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:76
相关论文
共 50 条