Density of subalgebras of Lipschitz functions in metric Sobolev spaces and applications to Wasserstein Sobolev spaces

被引:4
|
作者
Fornasier, Massimo [1 ]
Savare, Giuseppe [2 ,3 ]
Sodini, Giacomo Enrico [1 ]
机构
[1] TUM, Fak Math, Boltzmannstr 3, D-85748 Garching, Germany
[2] Bocconi Univ, Dept Decis Sci, Via Roentgen 1, I-20136 Milan, Italy
[3] Bocconi Univ, BIDSA, Via Roentgen 1, I-20136 Milan, Italy
关键词
Metric Sobolev spaces; Dirichlet forms; Cheeger energy; Kantorovich-Wasserstein distance; Optimal transport; Moreau-Yosida regularization; ENTROPIC MEASURE; DIFFERENTIABILITY; EQUATIONS; GEOMETRY; WEAK;
D O I
10.1016/j.jfa.2023.110153
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a general criterion for the density in energy of suitable subalgebras of Lipschitz functions in the metric Sobolev space H1,p(X, d,m) associated with a positive and finite Borel measure m in a separable and complete metric space (X, d). We then provide a relevant application to the case of the algebra of cylinder functions in the Wasserstein Sobolev space H1,2(P2(M), W2, m) arising from a positive and finite Borel measure m on the Kantorovich-Rubinstein-Wasserstein space (P2(M), W2) of probability measures in a finite dimensional Euclidean space, a complete Riemannian manifold, or a separable Hilbert space M. We will show that such a Sobolev space is always Hilbertian, independently of the choice of the reference measure m so that the resulting Cheeger energy is a Dirichlet form. We will eventually provide an explicit characterization for the corresponding notion of m-Wasserstein gradient, showinguseful calculus rules and its consistency with the tangent bundle and the Gamma-calculus inherited from the Dirichlet form.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:76
相关论文
共 50 条
  • [31] Density of smooth functions in weighted Sobolev spaces
    V. V. Zhikov
    Doklady Mathematics, 2013, 88 : 669 - 673
  • [32] Sobolev space properties of superharmonic functions on metric spaces
    Juha Kinnunen
    Olli Martio
    Results in Mathematics, 2003, 44 (1-2) : 114 - 129
  • [33] Density of smooth functions in weighted Sobolev spaces
    Zhikov, V. V.
    DOKLADY MATHEMATICS, 2013, 88 (03) : 669 - 673
  • [34] Weighted Sobolev spaces on metric measure spaces
    Ambrosio, Luigi
    Pinamonti, Andrea
    Speight, Gareth
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 746 : 39 - 65
  • [35] Capacitary density and removable sets for Newton-Sobolev functions in metric spaces
    Lahti, Panu
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (05)
  • [36] Grand Sobolev Spaces on Metric Measure Spaces
    S. V. Pavlov
    Siberian Mathematical Journal, 2022, 63 : 956 - 966
  • [37] Sobolev spaces and quasiconformal mappings on metric spaces
    Koskela, P
    EUROPEAN CONGRESS OF MATHEMATICS, VOL I, 2001, 201 : 457 - 467
  • [38] Local Lipschitz numbers and Sobolev spaces
    Zuercher, Thomas
    MICHIGAN MATHEMATICAL JOURNAL, 2007, 55 (03) : 561 - 574
  • [39] Singular integrals on Lipschitz and Sobolev spaces
    Komori, Y
    TAIWANESE JOURNAL OF MATHEMATICS, 2005, 9 (01): : 73 - 80
  • [40] ON THE LACK OF DENSITY OF LIPSCHITZ MAPPINGS IN SOBOLEV SPACES WITH HEISENBERG TARGET
    Dejarnette, Noel
    Hajlasz, Piotr
    Lukyanenko, Anton
    Tyson, Jeremy T.
    CONFORMAL GEOMETRY AND DYNAMICS, 2014, 18 : 119 - 156