Sobolev Extensions of Lipschitz Mappings into Metric Spaces

被引:0
|
作者
Zimmerman, Scott [1 ]
机构
[1] Univ Connecticut, Dept Math, 341 Mansfield Rd U1009, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
CONTACT EQUATIONS; MAPS; DENSITY; VALUES;
D O I
10.1093/imrn/rnx201
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Wenger and Young proved that the pair (R-m, H-n) has the Lipschitz extension property for m <= n where H-n is the sub-Riemannian Heisenberg group. That is, for some C > 0, any L-Lipschitz map from a subset of R-m into H-n can be extended to a CL-Lipschitz mapping on R-m. In this article, we construct Sobolev extensions of such Lipschitz mappings with no restriction on the dimensionm. We prove that any Lipschitz mapping from a compact subset of R-m into H-n may be extended to a Sobolev mapping on any bounded domain containing the set. More generally, we prove this result in the case of mappings into any Lipschitz (n-1)-connected metric space.
引用
收藏
页码:2241 / 2265
页数:25
相关论文
共 50 条