APPROXIMATION BY LIPSCHITZ FUNCTIONS IN ABSTRACT SOBOLEV SPACES ON METRIC SPACES

被引:0
|
作者
Mocanu, Marcelina [1 ]
机构
[1] Vasile Alecsandri Univ Bacau, Dept Math & Informat, Bacau 600115, Romania
来源
MATHEMATICAL REPORTS | 2013年 / 15卷 / 04期
关键词
metric measure space; Banach function space; Newtonian space; Lipschitz functions; Sobolev capacity; quasicontinuity;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the density of locally Lipschitz functions in a global Sobolev space based on a Banach function space implies the density of Lipschitz functions, with compact support in a given open set, in the corresponding Sobolev space with zero boundary values. In the case, when the Banach function space is a Lebesgue space, we recover some density results of Bjorn, Bjorn and Shanmugalingam (2008). Our results require neither a doubling measure nor the validity of a Poincare inequality in the underlying metric measure space.
引用
收藏
页码:459 / 475
页数:17
相关论文
共 50 条