On classification of non-abelian Painleve type systems

被引:2
|
作者
Bobrova, I. A. [1 ]
Sokolov, V. V. [2 ]
机构
[1] Natl Res Univ Higher Sch Econ, Moscow, Russia
[2] Inst Informat Transmiss Problems, Moscow, Russia
关键词
Non-abelian ODEs; Painleve equations; Isomonodromic Lax pairs; dz;
D O I
10.1016/j.geomphys.2023.104885
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find all non-abelian generalizations of P1 - P6 Painleve systems such that the corresponding autonomous system obtained by freezing the independent variable is integrable. All these systems have isomonodromic Lax representations.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Josephson junction of non-Abelian superconductors and non-Abelian Josephson vortices
    Nitta, Muneto
    NUCLEAR PHYSICS B, 2015, 899 : 78 - 90
  • [32] Note on Schwinger mechanism and a non-Abelian instability in a non-Abelian plasma
    Nair, V. P.
    Yelnikov, Alexandr
    PHYSICAL REVIEW D, 2010, 82 (12):
  • [33] Non-Abelian Holonomy in Degenerate Non-Hermitian Systems
    Shan, Zhong-Lei
    Sun, Yi-Ke
    Tao, Ran
    Chen, Qi-Dai
    Tian, Zhen-Nan
    Zhang, Xu-Lin
    PHYSICAL REVIEW LETTERS, 2024, 133 (05)
  • [34] Non-Abelian supertubes
    Fernandez-Melgarejo, Jose J.
    Park, Minkyu
    Shigemori, Masaki
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (12):
  • [35] Unveiling a spinor field classification with non-Abelian gauge symmetries
    Fabbri, Luca
    da Rocha, Roldao
    PHYSICS LETTERS B, 2018, 780 : 427 - 431
  • [36] The quintessence with Abelian and non-Abelian symmetry
    Li, XZ
    Hao, JG
    Liu, DJ
    Zhai, XH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (32): : 5921 - 5930
  • [37] Abelian and non-Abelian Weyl gravitoelectromagnetism
    Ramos, J.
    de Montigny, M.
    Khanna, F. C.
    ANNALS OF PHYSICS, 2020, 418
  • [38] Generalized non-abelian Toda models of dyonic type
    Gomes, JF
    Sotkov, GM
    Zimerman, AH
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 315 - 318
  • [39] On a non-abelian invariant on complex surfaces of general type
    Wing-Sum Cheung
    Bun Wong
    Science in China Series A: Mathematics, 2006, 49 : 1897 - 1900
  • [40] DIFFERENTIAL SUBSTITUTIONS FOR NON-ABELIAN EQUATIONS OF KDV TYPE
    Adler, V. E.
    UFA MATHEMATICAL JOURNAL, 2021, 13 (02): : 107 - 114