On classification of non-abelian Painleve type systems

被引:2
|
作者
Bobrova, I. A. [1 ]
Sokolov, V. V. [2 ]
机构
[1] Natl Res Univ Higher Sch Econ, Moscow, Russia
[2] Inst Informat Transmiss Problems, Moscow, Russia
关键词
Non-abelian ODEs; Painleve equations; Isomonodromic Lax pairs; dz;
D O I
10.1016/j.geomphys.2023.104885
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find all non-abelian generalizations of P1 - P6 Painleve systems such that the corresponding autonomous system obtained by freezing the independent variable is integrable. All these systems have isomonodromic Lax representations.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] On a non-abelian invariant on complex surfaces of general type
    Cheung Wing-Sum
    Wong Bun
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (12): : 1897 - 1900
  • [42] Non-Abelian antibrackets
    Alfaro, J
    Damgaard, PH
    PHYSICS LETTERS B, 1996, 369 (3-4) : 289 - 294
  • [43] Non-abelian ramification
    Pongerard, P
    Wagschal, C
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (01): : 51 - 88
  • [44] Non-abelian monopoles
    Auzzi, R
    Bolognesi, S
    Evslin, J
    Konishi, K
    Murayama, H
    NUCLEAR PHYSICS B, 2004, 701 (1-2) : 207 - 246
  • [45] INTEGRATION OF NON-ABELIAN TODA-TYPE CHAINS
    GEKHTMAN, MI
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1990, 24 (03) : 231 - 233
  • [46] Non-abelian ramification
    Wagschal, C
    JEAN LERAY '99 CONFERENCE PROCEEDINGS: THE KARLSKRONA CONFERENCE IN HONOR OF JEAN LERAY, 2003, 24 : 115 - +
  • [47] NON-ABELIAN ORBIFOLDS
    INOUE, K
    SAKAMOTO, M
    TAKANO, H
    PROGRESS OF THEORETICAL PHYSICS, 1987, 78 (04): : 908 - 922
  • [48] Non-Abelian supertubes
    José J. Fernández-Melgarejo
    Minkyu Park
    Masaki Shigemori
    Journal of High Energy Physics, 2017
  • [49] SUPERSYMMETRY AND NON-ABELIAN CHERN-SIMONS SYSTEMS
    NAVRATIL, P
    GEYER, HB
    PHYSICAL REVIEW D, 1994, 49 (02): : 1137 - 1140
  • [50] FADDEEV-JACKIW QUANTIZATION OF NON-ABELIAN SYSTEMS
    MONTANI, H
    WOTZASEK, C
    MODERN PHYSICS LETTERS A, 1993, 8 (35) : 3387 - 3396