Non-equilibrium Stationary Solutions for Multicomponent Coagulation Systems with Injection

被引:6
|
作者
Ferreira, Marina A. [1 ]
Lukkarinen, Jani [1 ]
Nota, Alessia [2 ]
Velazquez, Juan J. L. [3 ]
机构
[1] Univ Coimbra, Dept Math, CMUC, P-3000413 Coimbra, Portugal
[2] Univ Aquila, Dept Informat Engn Comp Sci & Math, I-67100 Laquila, Italy
[3] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
基金
芬兰科学院; 欧洲研究理事会;
关键词
Multicomponent Smoluchowski's equation; Non-equilibrium dynamics; Source term; Stationary injection solutions; Constant flux solutions; Mass flux; SELF-SIMILAR SOLUTIONS; SIMILARITY; EQUATION;
D O I
10.1007/s10955-023-03107-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The existence and non-existence of stationary solutions of multicomponent coagulation equations with a constant flux of mass towards large sizes is investigated. The flux may be induced by a source of small clusters or by a flux boundary condition at the origin of the composition space, and the coagulation kernel can be very general, merely satisfying certain power law asymptotic bounds in terms of the total number of monomers in a cluster. Our set-up, including an appropriate definition of multicomponent flux, allows a sharp classification of the existence of stationary solutions. In particular, this analysis extends previous results for one-component systems to a larger class of kernels.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Non-equilibrium Stationary Solutions for Multicomponent Coagulation Systems with Injection
    Marina A. Ferreira
    Jani Lukkarinen
    Alessia Nota
    Juan J. L. Velázquez
    Journal of Statistical Physics, 190
  • [2] Localization in Stationary Non-equilibrium Solutions for Multicomponent Coagulation Systems
    Marina A. Ferreira
    Jani Lukkarinen
    Alessia Nota
    Juan J. L. Velázquez
    Communications in Mathematical Physics, 2021, 388 : 479 - 506
  • [3] Localization in Stationary Non-equilibrium Solutions for Multicomponent Coagulation Systems
    Ferreira, Marina A.
    Lukkarinen, Jani
    Nota, Alessia
    Velazquez, Juan J. L.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (01) : 479 - 506
  • [4] Stationary Non-equilibrium Solutions for Coagulation Systems
    Marina A. Ferreira
    Jani Lukkarinen
    Alessia Nota
    Juan J. L. Velázquez
    Archive for Rational Mechanics and Analysis, 2021, 240 : 809 - 875
  • [5] Stationary Non-equilibrium Solutions for Coagulation Systems
    Ferreira, Marina A.
    Lukkarinen, Jani
    Nota, Alessia
    Velazquez, Juan J. L.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 240 (02) : 809 - 875
  • [6] Non-equilibrium stationary states in dissipative systems
    Farago, J
    UNSOLVED PROBLEMS OF NOISE AND FLUCTUATIONS, 2005, 800 : 527 - 532
  • [7] On radial stationary solutions to a model of non-equilibrium growth
    Escudero, Carlos
    Hakl, Robert
    Peral, Irene
    Torres, Pedro J.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2013, 24 : 437 - 453
  • [8] NON-EQUILIBRIUM SOLUTIONS FOR LEGISLATIVE SYSTEMS
    FEREJOHN, JA
    FIORINA, MP
    PACKEL, EW
    BEHAVIORAL SCIENCE, 1980, 25 (02): : 140 - 148
  • [9] Non-equilibrium processes in multiphase and multicomponent microscale systems
    Kuznetsov, V. V.
    ALL-RUSSIAN CONFERENCE XXXIV SIBERIAN THERMOPHYSICAL SEMINAR, DEDICATED TO THE 85TH ANNIVERSARY OF ACADEMICIAN A. K. REBROV, 2018, 1105
  • [10] Non-equilibrium stationary solitons
    Chu, KHW
    PHYSICA SCRIPTA, 2001, 64 (05) : 423 - 426