Non-equilibrium Stationary Solutions for Multicomponent Coagulation Systems with Injection

被引:6
|
作者
Ferreira, Marina A. [1 ]
Lukkarinen, Jani [1 ]
Nota, Alessia [2 ]
Velazquez, Juan J. L. [3 ]
机构
[1] Univ Coimbra, Dept Math, CMUC, P-3000413 Coimbra, Portugal
[2] Univ Aquila, Dept Informat Engn Comp Sci & Math, I-67100 Laquila, Italy
[3] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
基金
芬兰科学院; 欧洲研究理事会;
关键词
Multicomponent Smoluchowski's equation; Non-equilibrium dynamics; Source term; Stationary injection solutions; Constant flux solutions; Mass flux; SELF-SIMILAR SOLUTIONS; SIMILARITY; EQUATION;
D O I
10.1007/s10955-023-03107-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The existence and non-existence of stationary solutions of multicomponent coagulation equations with a constant flux of mass towards large sizes is investigated. The flux may be induced by a source of small clusters or by a flux boundary condition at the origin of the composition space, and the coagulation kernel can be very general, merely satisfying certain power law asymptotic bounds in terms of the total number of monomers in a cluster. Our set-up, including an appropriate definition of multicomponent flux, allows a sharp classification of the existence of stationary solutions. In particular, this analysis extends previous results for one-component systems to a larger class of kernels.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] Wave generation in non-equilibrium multicomponent media
    Zverev, A.A.
    Sirotkin, V.K.
    Atomnaya Energiya, 1994, 77 (05): : 371 - 379
  • [22] ASYMPTOTIC SOLUTION OF THE MASTER EQUATION NEAR A NON-EQUILIBRIUM TRANSITION - THE STATIONARY SOLUTIONS
    LEMARCHAND, H
    PHYSICA A, 1980, 101 (2-3): : 518 - 534
  • [23] NON-EQUILIBRIUM STATIONARY MODES OF BOUNDARY FRICTION
    Lyashenko, I. A.
    Metlov, L. S.
    Khomenko, A. V.
    Chepulskyi, S. N.
    JOURNAL OF NANO- AND ELECTRONIC PHYSICS, 2011, 3 (03) : 59 - 69
  • [24] STATIONARY STAGE OF NON-EQUILIBRIUM DYNAMICS OF ADSORPTION
    ZOLOTARE.PP
    KALINICH.AI
    DOKLADY AKADEMII NAUK SSSR, 1971, 199 (05): : 1098 - &
  • [25] THE NON-EQUILIBRIUM GREEN-FUNCTIONS AND THEIR APPLICATION TO NON-EQUILIBRIUM SYSTEMS
    NGUYEN, T
    DOKLADY AKADEMII NAUK SSSR, 1980, 251 (06): : 1365 - 1367
  • [26] PHASE-TRANSITIONS IN STATIONARY NON-EQUILIBRIUM STATES OF MODEL LATTICE SYSTEMS
    KATZ, S
    LEBOWITZ, JL
    SPOHN, H
    PHYSICAL REVIEW B, 1983, 28 (03): : 1655 - 1658
  • [27] ENTROPY OF NON-EQUILIBRIUM SYSTEMS
    RAYMOND, RC
    PHYSICAL REVIEW, 1950, 78 (03): : 351 - 351
  • [28] SENSITIVITY OF NON-EQUILIBRIUM SYSTEMS
    KONDEPUDI, DK
    PRIGOGINE, I
    PHYSICA A, 1981, 107 (01): : 1 - 24
  • [29] Stochastic non-equilibrium systems
    Stinchcombe, R
    ADVANCES IN PHYSICS, 2001, 50 (05) : 431 - 496
  • [30] Bistability in non-equilibrium systems
    Rastogi, RP
    Mishra, AP
    INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 1999, 38 (09): : 859 - 869