Non-equilibrium Stationary Solutions for Multicomponent Coagulation Systems with Injection

被引:6
|
作者
Ferreira, Marina A. [1 ]
Lukkarinen, Jani [1 ]
Nota, Alessia [2 ]
Velazquez, Juan J. L. [3 ]
机构
[1] Univ Coimbra, Dept Math, CMUC, P-3000413 Coimbra, Portugal
[2] Univ Aquila, Dept Informat Engn Comp Sci & Math, I-67100 Laquila, Italy
[3] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
基金
芬兰科学院; 欧洲研究理事会;
关键词
Multicomponent Smoluchowski's equation; Non-equilibrium dynamics; Source term; Stationary injection solutions; Constant flux solutions; Mass flux; SELF-SIMILAR SOLUTIONS; SIMILARITY; EQUATION;
D O I
10.1007/s10955-023-03107-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The existence and non-existence of stationary solutions of multicomponent coagulation equations with a constant flux of mass towards large sizes is investigated. The flux may be induced by a source of small clusters or by a flux boundary condition at the origin of the composition space, and the coagulation kernel can be very general, merely satisfying certain power law asymptotic bounds in terms of the total number of monomers in a cluster. Our set-up, including an appropriate definition of multicomponent flux, allows a sharp classification of the existence of stationary solutions. In particular, this analysis extends previous results for one-component systems to a larger class of kernels.
引用
收藏
页数:35
相关论文
共 50 条
  • [31] A non-equilibrium approach for polymer solutions
    Timoshenko, EG
    Kuznetsov, YA
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1998, 20 (12BIS): : 2359 - 2364
  • [32] NON-EQUILIBRIUM OPEN SYSTEMS AND NON-EQUILIBRIUM THERMO FIELD-DYNAMICS
    ARIMITSU, T
    PHYSICA A, 1989, 158 (01): : 317 - 325
  • [33] NON-EQUILIBRIUM INDUCTION OF SUPERCONDUCTIVITY BY TUNNELING INJECTION
    KIRICHENKO, IK
    PESKOVATSKY, SA
    SEMINOZHENKO, VP
    SOLID STATE COMMUNICATIONS, 1979, 31 (08) : 545 - 546
  • [34] Theory of non-equilibrium stationary states as a theory of resonances
    Merkli, Marco
    Mueckt, Matthias
    Sigal, Israel Michael
    ANNALES HENRI POINCARE, 2007, 8 (08): : 1539 - 1593
  • [35] Macroscopic Fluctuation Theory for Stationary Non-Equilibrium States
    L. Bertini
    A. De Sole
    D. Gabrielli
    G. Jona-Lasinio
    C. Landim
    Journal of Statistical Physics, 2002, 107 : 635 - 675
  • [36] NON-EQUILIBRIUM ENTROPY ON STATIONARY MARKOV-PROCESSES
    MARTINEZ, AS
    ACTA APPLICANDAE MATHEMATICAE, 1985, 3 (03) : 221 - 238
  • [37] On the Stationary Non-Equilibrium Measures for the “Field–Crystal” System
    T. V. Dudnikova
    Doklady Mathematics, 2022, 106 : 332 - 335
  • [38] Non-equilibrium and stationary fluctuations for the SSEP with slow boundary
    Goncalves, P.
    Jara, M.
    Menezes, O.
    Neumann, A.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (07) : 4326 - 4357
  • [39] Minimum Dissipation Principle in Stationary Non-Equilibrium States
    L. Bertini
    A. De Sole
    D. Gabrielli
    G. Jona-Lasinio
    C. Landim
    Journal of Statistical Physics, 2004, 116 : 831 - 841
  • [40] Minimum dissipation principle in stationary non-equilibrium states
    Bertini, L
    De Sole, A
    Gabrielli, D
    Jona-Lasinio, G
    Landim, C
    JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) : 831 - 841