On radial stationary solutions to a model of non-equilibrium growth

被引:23
|
作者
Escudero, Carlos [1 ,2 ]
Hakl, Robert [3 ]
Peral, Irene [1 ]
Torres, Pedro J. [4 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] Univ Autonoma Madrid, ICMAT, CSIC UAM UC3M UCM, E-28049 Madrid, Spain
[3] AS CR, Inst Math, Brno 61662, Czech Republic
[4] Univ Granada, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
non-equilibrium growth; radial solutions; variational methods; boundary value problems; ELLIPTIC PROBLEMS; CURVATURE FLOW; REGULARITY; INTERFACES; CONTINUUM; GRADIENT;
D O I
10.1017/S0956792512000484
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the formal geometric derivation of a non-equilibrium growth model that takes the form of a parabolic partial differential equation. Subsequently, we study its stationary radial solutions by means of variational techniques. Our results depend on the size of a parameter that plays the role of the strength of forcing. For small forcing we prove the existence and multiplicity of solutions to the elliptic problem. We discuss our results in the context of non-equilibrium statistical mechanics.
引用
收藏
页码:437 / 453
页数:17
相关论文
共 50 条
  • [1] Stationary Non-equilibrium Solutions for Coagulation Systems
    Marina A. Ferreira
    Jani Lukkarinen
    Alessia Nota
    Juan J. L. Velázquez
    Archive for Rational Mechanics and Analysis, 2021, 240 : 809 - 875
  • [2] Stationary Non-equilibrium Solutions for Coagulation Systems
    Ferreira, Marina A.
    Lukkarinen, Jani
    Nota, Alessia
    Velazquez, Juan J. L.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 240 (02) : 809 - 875
  • [3] Non-equilibrium Stationary Solutions for Multicomponent Coagulation Systems with Injection
    Ferreira, Marina A.
    Lukkarinen, Jani
    Nota, Alessia
    Velazquez, Juan J. L.
    JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (05)
  • [4] Localization in Stationary Non-equilibrium Solutions for Multicomponent Coagulation Systems
    Marina A. Ferreira
    Jani Lukkarinen
    Alessia Nota
    Juan J. L. Velázquez
    Communications in Mathematical Physics, 2021, 388 : 479 - 506
  • [5] Localization in Stationary Non-equilibrium Solutions for Multicomponent Coagulation Systems
    Ferreira, Marina A.
    Lukkarinen, Jani
    Nota, Alessia
    Velazquez, Juan J. L.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (01) : 479 - 506
  • [6] Non-equilibrium Stationary Solutions for Multicomponent Coagulation Systems with Injection
    Marina A. Ferreira
    Jani Lukkarinen
    Alessia Nota
    Juan J. L. Velázquez
    Journal of Statistical Physics, 190
  • [7] Non-equilibrium stationary solitons
    Chu, KHW
    PHYSICA SCRIPTA, 2001, 64 (05) : 423 - 426
  • [8] Gibbsian Stationary Non-equilibrium States
    De Carlo, Leonardo
    Gabrielli, Davide
    JOURNAL OF STATISTICAL PHYSICS, 2017, 168 (06) : 1191 - 1222
  • [9] Gibbsian Stationary Non-equilibrium States
    Leonardo De Carlo
    Davide Gabrielli
    Journal of Statistical Physics, 2017, 168 : 1191 - 1222
  • [10] RADIAL CHARACTERISTICS OF NON-EQUILIBRIUM DISCHARGES
    NOVAK, JP
    JOURNAL OF APPLIED PHYSICS, 1979, 50 (07) : 4671 - 4677