Lipschitz geometry of operator spaces and Lipschitz-free operator spaces

被引:2
|
作者
Braga, Bruno M. [1 ]
Chavez-Dominguez, Javier Alejandro [2 ]
Sinclair, Thomas [3 ]
机构
[1] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
[2] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
[3] Purdue Univ, Math Dept, 150 N Univ St, W Lafayette, IN 47907 USA
关键词
Primary; 47L25; 46L07; Secondary; 46B80; ULTRAPOWERS; PRODUCTS; UNIFORM;
D O I
10.1007/s00208-022-02518-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that there is an operator space notion of Lipschitz embeddability between operator spaces which is strictly weaker than its linear counterpart but which is still strong enough to impose linear restrictions on operator space structures. This shows that there is a nontrivial theory of nonlinear geometry for operator spaces and it answers a question in Braga et al. (Proc Am Math Soc 149(3):1139-1149, 2021). For that, we introduce the operator space version of Lipschitz-free Banach spaces and prove several properties of it. In particular, we show that separable operator spaces satisfy a sort of isometric Lipschitz-lifting property in the sense of Godefroy and Kalton. Gateaux differentiability of Lipschitz maps in the operator space category is also studied.
引用
收藏
页码:1053 / 1090
页数:38
相关论文
共 50 条
  • [21] Operator Lipschitz functions on Banach spaces
    Rozendaal, Jan
    Sukochev, Fedor
    Tomskova, Anna
    STUDIA MATHEMATICA, 2016, 232 (01) : 57 - 92
  • [22] Operator Lipschitz Functions and Model Spaces
    Aleksandrov A.B.
    Journal of Mathematical Sciences, 2014, 202 (4) : 485 - 518
  • [23] Lipschitz-free spaces, ultraproducts, and finite representability of metric spaces
    Garcia-Lirola, Luis C.
    Grelier, Guillaume
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (02)
  • [24] Lipschitz-free spaces and approximating sequences of projections
    Godefroy, Gilles
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 18 (02)
  • [25] Daugavet points and Δ-points in Lipschitz-free spaces
    Jung, Mingu
    Rueda Zoca, Abraham
    STUDIA MATHEMATICA, 2022, 265 (01) : 37 - 56
  • [26] Some remarks on the structure of Lipschitz-free spaces
    Hajek, Petr
    Novotny, Matej
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2017, 24 (02) : 283 - 304
  • [27] On the preserved extremal structure of Lipschitz-free spaces
    Aliaga, Ramon J.
    Guirao, Antonio J.
    STUDIA MATHEMATICA, 2019, 245 (01) : 1 - 14
  • [28] Lipschitz-free spaces and approximating sequences of projections
    Gilles Godefroy
    Banach Journal of Mathematical Analysis, 2024, 18
  • [29] Points of differentiability of the norm in Lipschitz-free spaces
    Aliaga, Ramon J.
    Rueda Zoca, Abraham
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 489 (02)
  • [30] On the strongly subdifferentiable points in Lipschitz-free spaces
    Christian Cobollo
    Sheldon Dantas
    Petr Hájek
    Mingu Jung
    Banach Journal of Mathematical Analysis, 2025, 19 (1)