We show that there is an operator space notion of Lipschitz embeddability between operator spaces which is strictly weaker than its linear counterpart but which is still strong enough to impose linear restrictions on operator space structures. This shows that there is a nontrivial theory of nonlinear geometry for operator spaces and it answers a question in Braga et al. (Proc Am Math Soc 149(3):1139-1149, 2021). For that, we introduce the operator space version of Lipschitz-free Banach spaces and prove several properties of it. In particular, we show that separable operator spaces satisfy a sort of isometric Lipschitz-lifting property in the sense of Godefroy and Kalton. Gateaux differentiability of Lipschitz maps in the operator space category is also studied.
机构:
St.Petersburg Department of the Steklov Mathematical Institute, St.PetersburgSt.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg
机构:
Universitat Politècnica de València.,Instituto Universitario de Matemàtica Pura y AplicadaUniversitat Politècnica de València.,Instituto Universitario de Matemàtica Pura y Aplicada
Christian Cobollo
Sheldon Dantas
论文数: 0引用数: 0
h-index: 0
机构:
University of Granada,Department of Mathematical AnalysisUniversitat Politècnica de València.,Instituto Universitario de Matemàtica Pura y Aplicada
Sheldon Dantas
Petr Hájek
论文数: 0引用数: 0
h-index: 0
机构:
Czech Technical University in Prague,Department of Mathematics, Faculty of Electrical EngineeringUniversitat Politècnica de València.,Instituto Universitario de Matemàtica Pura y Aplicada
Petr Hájek
Mingu Jung
论文数: 0引用数: 0
h-index: 0
机构:
Korea Institute for Advanced Study,June E Huh Center for Mathematical ChallengesUniversitat Politècnica de València.,Instituto Universitario de Matemàtica Pura y Aplicada