Grobner bases of generic ideals

被引:0
|
作者
Capaverde, Juliane [1 ]
Gao, Shuhong [2 ]
机构
[1] Univ Fed Rio Grande Do Sul, Dept Matemat Pura & Aplicada, Ave Bento Gonsalves 9500, BR-91509900 Porto Alegre, RS, Brazil
[2] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
关键词
Polynomial ring; Generic ideal; Grobner basis; Frob erg's conjecture; Initial ideal; Hilbert series; HILBERT SERIES; INITIAL IDEALS; SEQUENCES;
D O I
10.1016/j.jalgebra.2023.11.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I = (f(1), ... , f(n)) be a homogeneous ideal generated by generic polynomials in the polynomial ring R = K[x(1), ... , x(n)] over a field K, with deg f(i) = d(i). Froberg conjectured a formula for the Hilbert series of R/I, and it was conjectured by Moreno-Socias that the initial ideal of I is almost reverse lexicographic, a property that implies Frob erg's conjecture. We give a description of the initial ideal of I in the case where di >= (Sigma(i=1)(j=1) d(j)) - i - 1, and show that the initial ideal of I is almost reverse lexicographic if the degrees of generators satisfy the inequality for each i. This improves a result by Cho and Park, and we hope this approach can be strengthened to prove the conjecture in full. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:27 / 48
页数:22
相关论文
共 50 条
  • [41] Flat families by strongly stable ideals and a generalization of Grobner bases
    Cioffi, Francesca
    Roggero, Margherita
    JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (09) : 1070 - 1084
  • [42] Fast computation of Grobner bases of ideals of F[x, y]
    Chen, Yindong
    Lu, Yao
    Lu, Peizhong
    2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 2795 - +
  • [43] Computing Grobner bases for vanishing ideals of finite sets of points
    Farr, JB
    Gao, SH
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 2006, 3857 : 118 - 127
  • [44] Dimension-dependent bounds for Grobner bases of polynomial ideals
    Mayr, Ernst W.
    Ritscher, Stephan
    JOURNAL OF SYMBOLIC COMPUTATION, 2013, 49 : 78 - 94
  • [45] Universal Grobner bases of toric ideals of combinatorial neural codes
    Beer, Melissa
    Davis, Robert
    Elgin, Thomas
    Hertel, Matthew
    Laws, Kira
    Mavi, Rajinder
    Mercurio, Paula
    Newlon, Alexandra
    INVOLVE, A JOURNAL OF MATHEMATICS, 2021, 14 (05): : 723 - 742
  • [46] Generic Grobner bases and Weierstrass bases of homogeneous submodules of graded free modules
    Amasaki, M
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 152 (1-3) : 3 - 16
  • [47] Multiplicative bases, Grobner bases, and right Grobner bases
    Green, EL
    JOURNAL OF SYMBOLIC COMPUTATION, 2000, 29 (4-5) : 601 - 623
  • [48] Fast Grobner basis computation and polynomial reduction for generic bivariate ideals
    van der Hoeven, Joris
    Larrieu, Robin
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2018, 52 (03): : 55 - 58
  • [49] Fast Grobner basis computation and polynomial reduction for generic bivariate ideals
    van der Hoeven, Joris
    Larrieu, Robin
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2019, 30 (06) : 509 - 539
  • [50] Computing Grobner bases of pure binomial ideals via submodules of Zn
    Boffi, Giandomenico
    Logar, Alessandro
    JOURNAL OF SYMBOLIC COMPUTATION, 2012, 47 (10) : 1297 - 1308