Fast Grobner basis computation and polynomial reduction for generic bivariate ideals

被引:9
|
作者
van der Hoeven, Joris [1 ,2 ]
Larrieu, Robin [1 ,2 ]
机构
[1] Ecole Polytech, UMR 7161, LIX, Lab Informat,CNRS, Campus Ecole Polytech,1 Rue Honore Estienne Orves, F-91120 Palaiseau, France
[2] Ecole Polytech, Campus Ecole Polytech,1 Rue Honore Estienne Orves, F-91120 Palaiseau, France
关键词
Polynomial reduction; Grobner basis; Complexity; Algorithm; FAST MULTIPLICATION; BASES;
D O I
10.1007/s00200-019-00389-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let A, B is an element of K[ X, Y] be two bivariate polynomials over an effective field K, and let G be the reduced Grobner basis of the ideal I := < A, B > generated by A and B with respect to the usual degree lexicographic order. Assuming A and B sufficiently generic, we design a quasi-optimal algorithm for the reduction of P. K[X, Y] modulo G, where "quasi-optimal" is meant in terms of the size of the input A, B, P. Immediate applications are an ideal membership test and a multiplication algorithm for the quotient algebra A := K[ X, Y] / < A, B >, both in quasi-linear time. Moreover, we show that G itself can be computed in quasi-linear time with respect to the output size.
引用
收藏
页码:509 / 539
页数:31
相关论文
共 50 条
  • [1] Fast Grobner basis computation and polynomial reduction for generic bivariate ideals
    van der Hoeven, Joris
    Larrieu, Robin
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2018, 52 (03): : 55 - 58
  • [2] Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals
    Joris van der Hoeven
    Robin Larrieu
    Applicable Algebra in Engineering, Communication and Computing, 2019, 30 : 509 - 539
  • [3] Fast computation of Grobner basis of homogenous ideals of F[x, y]
    Lu PeiZhong
    Zou Yan
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2008, 51 (04): : 368 - 380
  • [4] Universal Grobner Basis for Parametric Polynomial Ideals
    Hashemi, Amir
    Darmian, Mahdi Dehghani
    Barkhordar, Marzieh
    MATHEMATICAL SOFTWARE - ICMS 2018, 2018, 10931 : 191 - 199
  • [5] Fast computation of generic bivariate resultants
    van der Hoeven, Joris
    Lecerf, Gregoire
    JOURNAL OF COMPLEXITY, 2021, 62
  • [6] Grobner bases of generic ideals
    Capaverde, Juliane
    Gao, Shuhong
    JOURNAL OF ALGEBRA, 2024, 641 : 27 - 48
  • [7] Fast computation of Grobner bases of ideals of F[x, y]
    Chen, Yindong
    Lu, Yao
    Lu, Peizhong
    2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 2795 - +
  • [8] W-Grobner basis and monomial ideals under polynomial composition
    Li Dong-mei
    Liu Jin-wang
    Liu Wei-jun
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2011, 26 (03) : 287 - 294
  • [9] Computing polynomial univariate representations of zero-dimensional ideals by Grobner basis
    Ma XiaoDong
    Sun Yao
    Wang DingKang
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (06) : 1293 - 1302
  • [10] THE STRUCTURE OF POLYNOMIAL IDEALS AND GROBNER BASES
    DUBE, TW
    SIAM JOURNAL ON COMPUTING, 1990, 19 (04) : 750 - 773