Universal Grobner bases of toric ideals of combinatorial neural codes

被引:0
|
作者
Beer, Melissa [1 ]
Davis, Robert [2 ]
Elgin, Thomas [3 ]
Hertel, Matthew [4 ]
Laws, Kira [5 ]
Mavi, Rajinder [6 ]
Mercurio, Paula [4 ]
Newlon, Alexandra [2 ]
机构
[1] Franklin Coll, Dept Math & Comp, Franklin, IN 46131 USA
[2] Colgate Univ, Dept Math, Hamilton, NY 13346 USA
[3] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[4] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[5] Applachian State Univ, Dept Math Sci, Boone, NC USA
[6] Univ Cincinnati, Dept Math, Cincinnati, OH USA
来源
INVOLVE, A JOURNAL OF MATHEMATICS | 2021年 / 14卷 / 05期
基金
美国国家科学基金会;
关键词
combinatorial neural codes; place cells;
D O I
10.2140/involve.2021.14.723
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the 1970s, O'Keefe and Dostrovsky discovered that certain neurons, called place cells, in an animal's brain are tied to its location within its arena. A combinatorial neural code is a collection of 0/1-vectors which encode the patterns of cofiring activity among the place cells. Gross, Obatake, and Youngs have recently used techniques from toric algebra to study when a neural code is 0-, 1-, or 2-inductively pierced: a property that allows one to reconstruct a Venn diagramlike planar figure that acts as a geometric schematic for the neural cofiring patterns. This article continues their work by closely focusing on an assortment of classes of combinatorial neural codes. In particular, we identify universal Grobner bases of the toric ideals for these codes.
引用
收藏
页码:723 / 742
页数:20
相关论文
共 50 条
  • [1] On the universal Grobner bases of toric ideals of graphs
    Tatakis, Christos
    Thoma, Apostolos
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (05) : 1540 - 1548
  • [2] GROBNER BASES OF SIMPLICIAL TORIC IDEALS
    Hellus, Michael
    Hoa, Le Tuan
    Stueckrad, Juergen
    NAGOYA MATHEMATICAL JOURNAL, 2009, 196 : 67 - 85
  • [3] Equivariant Grobner Bases of Symmetric Toric Ideals
    Krone, Robert
    PROCEEDINGS OF THE 2016 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC 2016), 2016, : 311 - 318
  • [4] Grobner Bases of Toric Ideals Associated with Matroids
    Hayase, Ken-ichi
    Hibi, Takayuki
    Katsuno, Koyo
    Shibata, Kazuki
    ACTA MATHEMATICA VIETNAMICA, 2022, 47 (04) : 775 - 779
  • [5] Grobner bases of neural ideals
    Garcia, Rebecca
    Puente, Luis David Garcia
    Kruse, Ryan
    Liu, Jessica
    Miyata, Dane
    Petersen, Ethan
    Phillipson, Kaitlyn
    Shiu, Anne
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2018, 28 (04) : 553 - 571
  • [6] A combinatorial result on Grobner Fans with an application to universal Grobner bases
    Collart, S
    Mall, D
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1996, 7 (05) : 365 - 375
  • [7] Universal Grobner Bases and Cartwright-Sturmfels Ideals
    Conca, A.
    De Negri, E.
    Gorla, E.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (07) : 1979 - 1991
  • [8] Many toric ideals generated by quadratic binomials possess no quadratic Grobner bases
    Hibi, Takayuki
    Nishiyama, Kenta
    Ohsugi, Hidefumi
    Shikama, Akihiro
    JOURNAL OF ALGEBRA, 2014, 408 : 138 - 146
  • [9] GROBNER BASES OF TORIC VARIETIES
    STURMFELS, B
    TOHOKU MATHEMATICAL JOURNAL, 1991, 43 (02) : 249 - 261
  • [10] Computing Grobner fans of toric ideals
    Huber, B
    Thomas, RR
    EXPERIMENTAL MATHEMATICS, 2000, 9 (03) : 321 - 331