Machine learning-based classification of Alzheimer's disease and its at-risk states using personality traits, anxiety, and depression

被引:3
|
作者
Waschkies, Konrad F. [1 ,2 ]
Soch, Joram [1 ,3 ]
Darna, Margarita [1 ,4 ]
Richter, Anni [4 ,5 ,6 ]
Altenstein, Slawek [7 ,8 ]
Beyle, Aline [9 ,10 ]
Brosseron, Frederic [9 ]
Buchholz, Friederike [7 ,11 ,12 ,13 ,14 ]
Butryn, Michaela [15 ,16 ]
Dobisch, Laura [15 ]
Ewers, Michael [17 ,18 ]
Fliessbach, Klaus [9 ,19 ]
Gabelin, Tatjana
Glanz, Wenzel [15 ,16 ]
Goerss, Doreen [20 ,21 ]
Gref, Daria [11 ]
Janowitz, Daniel [18 ]
Kilimann, Ingo [20 ,21 ]
Lohse, Andrea [8 ]
Munk, Matthias H. [22 ,23 ,24 ]
Rauchmann, Boris-Stephan [25 ,26 ,27 ]
Rostamzadeh, Ayda [28 ]
Roy, Nina [9 ]
Spruth, Eike Jakob [7 ,8 ]
Dechent, Peter [29 ]
Heneka, Michael T. [9 ]
Hetzer, Stefan [30 ]
Ramirez, Alfredo [9 ,19 ,31 ,32 ,33 ,34 ,35 ]
Scheffler, Klaus [36 ]
Buerger, Katharina [17 ,18 ]
Laske, Christoph [22 ,23 ,24 ]
Perneczky, Robert [17 ,25 ,26 ,37 ,38 ]
Peters, Oliver [7 ,11 ,12 ,13 ,14 ]
Priller, Josef [7 ,8 ,39 ,40 ,41 ]
Schneider, Anja [9 ,19 ]
Spottke, Annika [9 ,10 ]
Teipel, Stefan [20 ,21 ]
Duezel, Emrah [15 ,16 ]
Jessen, Frank [9 ,28 ,31 ]
Wiltfang, Jens [1 ,2 ,42 ]
Schott, Bjoern H. [1 ,2 ,4 ]
Kizilirmak, Jasmin M. [1 ,43 ]
机构
[1] German Ctr Neurodegenerat Dis DZNE, Gottingen, Germany
[2] Univ Med Ctr Gottingen, Dept Psychiat & Psychotherapy, Gottingen, Germany
[3] Bernstein Ctr Computat Neurosci, Berlin, Germany
[4] Leibniz Inst Neurobiol, Magdeburg, Germany
[5] German Ctr Mental Hlth DZPG, Munich, Germany
[6] Ctr Intervent & Res Adapt & Maladapt Brain Circui, Jena, Germany
[7] German Ctr Neurodegenerat Dis DZNE, Berlin, Germany
[8] Charite, Dept Psychiat & Psychotherapy, Berlin, Germany
[9] German Ctr Neurodegenerat Dis DZNE, Bonn, Germany
[10] Univ Bonn, Dept Neurol, Bonn, Germany
[11] Charite Univ Med Berlin, Berlin, Germany
[12] Free Univ Berlin, Berlin, Germany
[13] Humboldt Univ, Berlin, Germany
[14] Berlin Inst Psychiat & Psychotherapy, Berlin, Germany
[15] German Ctr Neurodegenerat Dis DZNE, Magdeburg, Germany
[16] Otto von Guericke Univ, Inst Cognit Neurol & Dementia Res IKND, Magdeburg, Germany
[17] German Ctr Neurodegenerat Dis DZNE, Munich, Germany
[18] Ludwig Maximilians Univ Munchen, Univ Hosp, Inst Stroke & Dementia Res ISD, Munich, Germany
[19] Univ Bonn, Med Ctr, Dept Neurodegenerat Dis & Geriatr Psychiat Psychi, Bonn, Germany
[20] German Ctr Neurodegenerat Dis DZNE, Rostock, Germany
[21] Rostock Univ, Med Ctr, Dept Psychosomat Med, Rostock, Germany
[22] German Ctr Neurodegenerat Dis DZNE, Tubingen, Germany
[23] Univ Tubingen, Sect Dementia Res, Hertie Inst Clin Brain Res, Tubingen, Germany
[24] Univ Tubingen, Dept Psychiat & Psychotherapy, Tubingen, Germany
[25] Ludwig Maximilians Univ Munchen, Dept Psychiat & Psychotherapy, Univ Hosp, Munich, Germany
[26] Univ Sheffield, Sheffield Inst Translat Neurosci SITraN, Sheffield, S Yorkshire, England
[27] Univ Hosp LMU, Dept Neuroradiol, Munich, Germany
[28] Univ Cologne, Fac Med, Dept Psychiat, Cologne, Germany
[29] Georg August Univ Goettingen, Dept Cognit Neurol, MR Res Neurosci, Gottingen, Germany
[30] Charite Univ Med Berlin, Berlin Ctr Adv Neuroimaging, Berlin, Germany
[31] Univ Cologne, Excellence Cluster Cellular Stress Responses Agin, Cologne, Germany
[32] Univ Cologne, Div Neurogenet & Mol Psychiat, Dept Psychiat & Psychotherapy, Fac Med, Cologne, Germany
[33] Univ Cologne, Univ Hosp Cologne, Cologne, Germany
[34] Dept Psychiat, San Antonio, TX USA
[35] Glenn Biggs Inst Alzheimers & Neurodegenerat Dis, San Antonio, TX USA
[36] Univ Tubingen, Dept Biomed Magnet Resonance, Tubingen, Germany
[37] Munich Cluster Syst Neurol SyNergy Munich, Munich, Germany
[38] Imperial Coll London, Sch Publ Hlth, Ageing Epidemiol Res Unit AGE, London, England
[39] Tech Univ Munich, Dept Psychiat & Psychotherapy, Sch Med, Munich, Germany
[40] Univ Edinburgh, Edinburgh, Midlothian, Scotland
[41] UK DRI, Edinburgh, Midlothian, Scotland
[42] Univ Aveiro, Dept Med Sci, Inst Biomed iBiMED, Neurosci & Signaling Grp, Aveiro, Portugal
[43] Univ Hildesheim, Inst Psychol, Neurodidact & NeuroLab, Hildesheim, Germany
关键词
Alzheimer's disease; amnestic mild cognitive impairment; biomarker; cerebrospinal fluid; fMRI; machine learning; personality; resting-state; subjective cognitive decline; support vector machine; MILD COGNITIVE IMPAIRMENT; ASSOCIATION WORKGROUPS; DIAGNOSTIC GUIDELINES; NATIONAL INSTITUTE; CEREBROSPINAL-FLUID; DEFAULT MODE; DEMENTIA; RECOMMENDATIONS; ANOSOGNOSIA; SYMPTOMS;
D O I
10.1002/gps.6007
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Background Alzheimer's disease (AD) is often preceded by stages of cognitive impairment, namely subjective cognitive decline (SCD) and mild cognitive impairment (MCI). While cerebrospinal fluid (CSF) biomarkers are established predictors of AD, other non-invasive candidate predictors include personality traits, anxiety, and depression, among others. These predictors offer non-invasive assessment and exhibit changes during AD development and preclinical stages.Methods In a cross-sectional design, we comparatively evaluated the predictive value of personality traits (Big Five), geriatric anxiety and depression scores, resting-state functional magnetic resonance imaging activity of the default mode network, apoliprotein E (ApoE) genotype, and CSF biomarkers (tTau, pTau181, A beta 42/40 ratio) in a multi-class support vector machine classification. Participants included 189 healthy controls (HC), 338 individuals with SCD, 132 with amnestic MCI, and 74 with mild AD from the multicenter DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE).ResultsMean predictive accuracy across all participant groups was highest when utilizing a combination of personality, depression, and anxiety scores. HC were best predicted by a feature set comprised of depression and anxiety scores and participants with AD were best predicted by a feature set containing CSF biomarkers. Classification of participants with SCD or aMCI was near chance level for all assessed feature sets.Conclusion Our results demonstrate predictive value of personality trait and state scores for AD. Importantly, CSF biomarkers, personality, depression, anxiety, and ApoE genotype show complementary value for classification of AD and its at-risk stages.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] An improved machine learning technique based on downsized KPCA for Alzheimer's disease classification
    Neffati, Syrine
    Ben Abdellafou, Khaoula
    Jaffel, Ines
    Taouali, Okba
    Bouzrara, Kais
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2019, 29 (02) : 121 - 131
  • [42] Transfer Learning-Based Ensemble of Deep Neural Architectures for Alzheimer's and Parkinson's Disease Classification
    Vimbi, Viswan
    Shaffi, Noushath
    Mahmud, Mufti
    Subramanian, Karthikeyan
    Hajamohideen, Faizal
    APPLIED INTELLIGENCE AND INFORMATICS, AII 2023, 2024, 2065 : 186 - 204
  • [43] Machine Learning-based Virtual Screening and Its Applications to Alzheimer's Drug Discovery: A Review
    Carpenter, Kristy A.
    Huang, Xudong
    CURRENT PHARMACEUTICAL DESIGN, 2018, 24 (28) : 3347 - 3358
  • [44] Deep Learning-Based Classification and Voxel-Based Visualization of Frontotemporal Dementia and Alzheimer's Disease
    Hu, Jingjing
    Qing, Zhao
    Liu, Renyuan
    Zhang, Xin
    Lv, Pin
    Wang, Maoxue
    Wang, Yang
    He, Kelei
    Gao, Yang
    Zhang, Bing
    FRONTIERS IN NEUROSCIENCE, 2021, 14
  • [45] Classification of Alzheimer's disease using Ricci flow-based spherical parameterization and machine learning techniques
    Khodaei, Masoumeh
    Bidabad, Behroz
    Shiri, Mohammad Ebrahim
    Sedaghat, Maral Khadem
    Amirifard, Hamed
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (10) : 6529 - 6545
  • [46] Speech-based detection of multi-class Alzheimer's disease classification using machine learning
    Tripathi, Tripti
    Kumar, Rakesh
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024, 18 (01) : 83 - 96
  • [47] Machine Learning-Based Method for Personalized and Cost-Effective Detection of Alzheimer's Disease
    Escudero, Javier
    Ifeachor, Emmanuel
    Zajicek, John P.
    Green, Colin
    Shearer, James
    Pearson, Stephen
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (01) : 164 - 168
  • [48] Deep Learning-Based Magnetic Resonance Image Segmentation and Classification for Alzheimer's Disease Diagnosis
    Manochandar, T.
    Diderot, P. Kumaraguru
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023,
  • [49] Deep Learning-Based Magnetic Resonance Image Segmentation and Classification for Alzheimer's Disease Diagnosis
    Manochandar, T.
    Diderot, P. Kumaraguru
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023,
  • [50] Deep Learning-based Classification of MRI Images for Early Detection and Staging of Alzheimer's Disease
    Kumar, Parvatham Niranjan
    Maguluri, Lakshmana Phaneendra
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (05) : 451 - 459