Machine learning-based classification of Alzheimer's disease and its at-risk states using personality traits, anxiety, and depression

被引:3
|
作者
Waschkies, Konrad F. [1 ,2 ]
Soch, Joram [1 ,3 ]
Darna, Margarita [1 ,4 ]
Richter, Anni [4 ,5 ,6 ]
Altenstein, Slawek [7 ,8 ]
Beyle, Aline [9 ,10 ]
Brosseron, Frederic [9 ]
Buchholz, Friederike [7 ,11 ,12 ,13 ,14 ]
Butryn, Michaela [15 ,16 ]
Dobisch, Laura [15 ]
Ewers, Michael [17 ,18 ]
Fliessbach, Klaus [9 ,19 ]
Gabelin, Tatjana
Glanz, Wenzel [15 ,16 ]
Goerss, Doreen [20 ,21 ]
Gref, Daria [11 ]
Janowitz, Daniel [18 ]
Kilimann, Ingo [20 ,21 ]
Lohse, Andrea [8 ]
Munk, Matthias H. [22 ,23 ,24 ]
Rauchmann, Boris-Stephan [25 ,26 ,27 ]
Rostamzadeh, Ayda [28 ]
Roy, Nina [9 ]
Spruth, Eike Jakob [7 ,8 ]
Dechent, Peter [29 ]
Heneka, Michael T. [9 ]
Hetzer, Stefan [30 ]
Ramirez, Alfredo [9 ,19 ,31 ,32 ,33 ,34 ,35 ]
Scheffler, Klaus [36 ]
Buerger, Katharina [17 ,18 ]
Laske, Christoph [22 ,23 ,24 ]
Perneczky, Robert [17 ,25 ,26 ,37 ,38 ]
Peters, Oliver [7 ,11 ,12 ,13 ,14 ]
Priller, Josef [7 ,8 ,39 ,40 ,41 ]
Schneider, Anja [9 ,19 ]
Spottke, Annika [9 ,10 ]
Teipel, Stefan [20 ,21 ]
Duezel, Emrah [15 ,16 ]
Jessen, Frank [9 ,28 ,31 ]
Wiltfang, Jens [1 ,2 ,42 ]
Schott, Bjoern H. [1 ,2 ,4 ]
Kizilirmak, Jasmin M. [1 ,43 ]
机构
[1] German Ctr Neurodegenerat Dis DZNE, Gottingen, Germany
[2] Univ Med Ctr Gottingen, Dept Psychiat & Psychotherapy, Gottingen, Germany
[3] Bernstein Ctr Computat Neurosci, Berlin, Germany
[4] Leibniz Inst Neurobiol, Magdeburg, Germany
[5] German Ctr Mental Hlth DZPG, Munich, Germany
[6] Ctr Intervent & Res Adapt & Maladapt Brain Circui, Jena, Germany
[7] German Ctr Neurodegenerat Dis DZNE, Berlin, Germany
[8] Charite, Dept Psychiat & Psychotherapy, Berlin, Germany
[9] German Ctr Neurodegenerat Dis DZNE, Bonn, Germany
[10] Univ Bonn, Dept Neurol, Bonn, Germany
[11] Charite Univ Med Berlin, Berlin, Germany
[12] Free Univ Berlin, Berlin, Germany
[13] Humboldt Univ, Berlin, Germany
[14] Berlin Inst Psychiat & Psychotherapy, Berlin, Germany
[15] German Ctr Neurodegenerat Dis DZNE, Magdeburg, Germany
[16] Otto von Guericke Univ, Inst Cognit Neurol & Dementia Res IKND, Magdeburg, Germany
[17] German Ctr Neurodegenerat Dis DZNE, Munich, Germany
[18] Ludwig Maximilians Univ Munchen, Univ Hosp, Inst Stroke & Dementia Res ISD, Munich, Germany
[19] Univ Bonn, Med Ctr, Dept Neurodegenerat Dis & Geriatr Psychiat Psychi, Bonn, Germany
[20] German Ctr Neurodegenerat Dis DZNE, Rostock, Germany
[21] Rostock Univ, Med Ctr, Dept Psychosomat Med, Rostock, Germany
[22] German Ctr Neurodegenerat Dis DZNE, Tubingen, Germany
[23] Univ Tubingen, Sect Dementia Res, Hertie Inst Clin Brain Res, Tubingen, Germany
[24] Univ Tubingen, Dept Psychiat & Psychotherapy, Tubingen, Germany
[25] Ludwig Maximilians Univ Munchen, Dept Psychiat & Psychotherapy, Univ Hosp, Munich, Germany
[26] Univ Sheffield, Sheffield Inst Translat Neurosci SITraN, Sheffield, S Yorkshire, England
[27] Univ Hosp LMU, Dept Neuroradiol, Munich, Germany
[28] Univ Cologne, Fac Med, Dept Psychiat, Cologne, Germany
[29] Georg August Univ Goettingen, Dept Cognit Neurol, MR Res Neurosci, Gottingen, Germany
[30] Charite Univ Med Berlin, Berlin Ctr Adv Neuroimaging, Berlin, Germany
[31] Univ Cologne, Excellence Cluster Cellular Stress Responses Agin, Cologne, Germany
[32] Univ Cologne, Div Neurogenet & Mol Psychiat, Dept Psychiat & Psychotherapy, Fac Med, Cologne, Germany
[33] Univ Cologne, Univ Hosp Cologne, Cologne, Germany
[34] Dept Psychiat, San Antonio, TX USA
[35] Glenn Biggs Inst Alzheimers & Neurodegenerat Dis, San Antonio, TX USA
[36] Univ Tubingen, Dept Biomed Magnet Resonance, Tubingen, Germany
[37] Munich Cluster Syst Neurol SyNergy Munich, Munich, Germany
[38] Imperial Coll London, Sch Publ Hlth, Ageing Epidemiol Res Unit AGE, London, England
[39] Tech Univ Munich, Dept Psychiat & Psychotherapy, Sch Med, Munich, Germany
[40] Univ Edinburgh, Edinburgh, Midlothian, Scotland
[41] UK DRI, Edinburgh, Midlothian, Scotland
[42] Univ Aveiro, Dept Med Sci, Inst Biomed iBiMED, Neurosci & Signaling Grp, Aveiro, Portugal
[43] Univ Hildesheim, Inst Psychol, Neurodidact & NeuroLab, Hildesheim, Germany
关键词
Alzheimer's disease; amnestic mild cognitive impairment; biomarker; cerebrospinal fluid; fMRI; machine learning; personality; resting-state; subjective cognitive decline; support vector machine; MILD COGNITIVE IMPAIRMENT; ASSOCIATION WORKGROUPS; DIAGNOSTIC GUIDELINES; NATIONAL INSTITUTE; CEREBROSPINAL-FLUID; DEFAULT MODE; DEMENTIA; RECOMMENDATIONS; ANOSOGNOSIA; SYMPTOMS;
D O I
10.1002/gps.6007
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Background Alzheimer's disease (AD) is often preceded by stages of cognitive impairment, namely subjective cognitive decline (SCD) and mild cognitive impairment (MCI). While cerebrospinal fluid (CSF) biomarkers are established predictors of AD, other non-invasive candidate predictors include personality traits, anxiety, and depression, among others. These predictors offer non-invasive assessment and exhibit changes during AD development and preclinical stages.Methods In a cross-sectional design, we comparatively evaluated the predictive value of personality traits (Big Five), geriatric anxiety and depression scores, resting-state functional magnetic resonance imaging activity of the default mode network, apoliprotein E (ApoE) genotype, and CSF biomarkers (tTau, pTau181, A beta 42/40 ratio) in a multi-class support vector machine classification. Participants included 189 healthy controls (HC), 338 individuals with SCD, 132 with amnestic MCI, and 74 with mild AD from the multicenter DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE).ResultsMean predictive accuracy across all participant groups was highest when utilizing a combination of personality, depression, and anxiety scores. HC were best predicted by a feature set comprised of depression and anxiety scores and participants with AD were best predicted by a feature set containing CSF biomarkers. Classification of participants with SCD or aMCI was near chance level for all assessed feature sets.Conclusion Our results demonstrate predictive value of personality trait and state scores for AD. Importantly, CSF biomarkers, personality, depression, anxiety, and ApoE genotype show complementary value for classification of AD and its at-risk stages.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Machine Learning-Based Perivascular Space Volumetry in Alzheimer Disease
    Deike, Katerina
    Decker, Andreas
    Scheyhing, Paul
    Harten, Julia
    Zimmermann, Nadine
    Paech, Daniel
    Peters, Oliver
    Freiesleben, Silka D.
    Schneider, Luisa-Sophie
    Preis, Lukas
    Priller, Josef
    Spruth, Eike
    Altenstein, Slawek
    Lohse, Andrea
    Fliessbach, Klaus
    Kimmich, Okka
    Wiltfang, Jens
    Bartels, Claudia
    Hansen, Niels
    Jessen, Frank
    Rostamzadeh, Ayda
    Duezel, Emrah
    Glanz, Wenzel
    Incesoy, Enise I.
    Butryn, Michaela
    Buerger, Katharina
    Janowitz, Daniel
    Ewers, Michael
    Perneczky, Robert
    Rauchmann, Boris-Stephan
    Teipel, Stefan
    Kilimann, Ingo
    Goerss, Doreen
    Laske, Christoph
    Munk, Matthias H.
    Spottke, Annika
    Roy, Nina
    Wagner, Michael
    Roeske, Sandra
    Heneka, Michael T.
    Brosseron, Frederic
    Ramirez, Alfredo
    Dobisch, Laura
    Wolfsgruber, Steffen
    Kleineidam, Luca
    Yakupov, Renat
    Stark, Melina
    Schmid, Matthias C.
    Berger, Moritz
    Hetzer, Stefan
    INVESTIGATIVE RADIOLOGY, 2024, 59 (09) : 667 - 676
  • [22] Deep learning-based polygenic risk analysis for Alzheimer's disease prediction
    Zhou, Xiaopu
    Chen, Yu
    Ip, Fanny C. F.
    Jiang, Yuanbing
    Cao, Han
    Lv, Ge
    Zhong, Huan
    Chen, Jiahang
    Ye, Tao
    Chen, Yuewen
    Zhang, Yulin
    Ma, Shuangshuang
    Lo, Ronnie M. N.
    Tong, Estella P. S.
    Mok, Vincent C. T.
    Kwok, Timothy C. Y.
    Guo, Qihao
    Mok, Kin Y.
    Shoai, Maryam
    Hardy, John
    Chen, Lei
    Fu, Amy K. Y.
    Ip, Nancy Y.
    COMMUNICATIONS MEDICINE, 2023, 3 (01):
  • [23] Deep learning-based polygenic risk analysis for Alzheimer’s disease prediction
    Xiaopu Zhou
    Yu Chen
    Fanny C. F. Ip
    Yuanbing Jiang
    Han Cao
    Ge Lv
    Huan Zhong
    Jiahang Chen
    Tao Ye
    Yuewen Chen
    Yulin Zhang
    Shuangshuang Ma
    Ronnie M. N. Lo
    Estella P. S. Tong
    Vincent C. T. Mok
    Timothy C. Y. Kwok
    Qihao Guo
    Kin Y. Mok
    Maryam Shoai
    John Hardy
    Lei Chen
    Amy K. Y. Fu
    Nancy Y. Ip
    Communications Medicine, 3
  • [24] Monitoring Alzheimer's Disease Progression in Mild Cognitive Impairment Stage Using Machine Learning-Based FDG-PET Classification Methods
    Beheshti, Iman
    Geddert, Natasha
    Perron, Jarrad
    Gupta, Vinay
    Albensi, Benedict C.
    Ko, Ji Hyun
    JOURNAL OF ALZHEIMERS DISEASE, 2022, 89 (04) : 1493 - 1502
  • [25] Deep learning-based identification of genetic variants: application to Alzheimer's disease classification
    Jo, Taeho
    Nho, Kwangsik
    Bice, Paula
    Saykin, Andrew J.
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [26] A proficient approach for the classification of Alzheimer's disease using a hybridization of machine learning and deep learning
    Raza, Hafiz Ahmed
    Ansari, Shahab U.
    Javed, Kamran
    Hanif, Muhammad
    Qaisar, Saeed Mian
    Haider, Usman
    Plawiak, Pawel
    Maab, Iffat
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [27] Classification of Parkinson's disease and its stages using machine learning
    Templeton, John Michael
    Poellabauer, Christian
    Schneider, Sandra
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [28] Classification of Parkinson’s disease and its stages using machine learning
    John Michael Templeton
    Christian Poellabauer
    Sandra Schneider
    Scientific Reports, 12
  • [29] Toward Alzheimer's disease classification through machine learning
    Rohini, M.
    Surendran, D.
    SOFT COMPUTING, 2021, 25 (04) : 2589 - 2597
  • [30] Toward Alzheimer’s disease classification through machine learning
    M. Rohini
    D. Surendran
    Soft Computing, 2021, 25 : 2589 - 2597