Application of deep learning and machine learning methods to predict NSCLC patients' survival from baseline 18F-FDG PET images

被引:0
|
作者
Le, Thi Khuyen [1 ]
David, Chardin [2 ]
Contu, Sara [2 ]
Hugonnet, Florent [3 ]
Bauckneht, Matteo [4 ]
Otto, Josiane [2 ]
Girum, Kibrom [5 ]
Orlhac, Fanny [2 ,6 ]
Humbert, Olivier [2 ]
机构
[1] 3IA Cote dAzur, Nice, France
[2] Ctr Antoine Lacassagne, Nice, France
[3] Ctr Hosp Princesse Grace Monaco, Monaco, Monaco
[4] IRCCS Osped Policlin San Martino, Genoa, Italy
[5] Univ Paris Saclay, LITO Lab, U1288 Inserm, Inst Curie, Orsay, France
[6] Inst Curie, LITO, INSERM, Paris, France
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
P883
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Comprehensive assessment of 18F-FDG PET/CT images of cancer patients improves predictions of survival
    Liu, G.
    La Fontaine, M.
    Weisman, A.
    Houshmandi, S. S.
    Lokre, O.
    Jeraj, R.
    Perk, T.
    ANNALS OF ONCOLOGY, 2022, 33 (07) : S575 - S575
  • [32] Synthetic 18F-FDG PET Image Generation Using a Combination of Biomathematical Modeling and Machine Learning
    Abazari, Mohammad Amin
    Soltani, Madjid
    Kashkooli, Farshad Moradi
    Raahemifar, Kaamran
    CANCERS, 2022, 14 (11)
  • [33] Machine learning derived input-function in a dynamic 18F-FDG PET study of mice
    Kuttner, Samuel
    Wickstrom, Kristoffer Knutsen
    Kalda, Gustav
    Dorraji, S. Esmaeil
    Martin-Armas, Montserrat
    Oteiza, Ana
    Jenssen, Robert
    Fenton, Kristin
    Sundset, Rune
    Axelsson, Jan
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2020, 6 (01)
  • [34] Deep learning derived input-function in dynamic 18F-FDG PET imaging of mice
    Kuttner, S.
    Luppino, L. T.
    Wickstrom, K. K.
    Midtbo, N. T. D.
    Dorraji, E.
    Oteiza, A.
    Martin-Armas, M.
    Fenton, K.
    Convert, L.
    Sarrhini, O.
    Lecomte, R.
    Kampffmeyer, M. C.
    Jenssen, R.
    Axelsson, J.
    Sundset, R.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (SUPPL 1) : S245 - S245
  • [35] Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images
    Wang, Hongkai
    Zhou, Zongwei
    Li, Yingci
    Chen, Zhonghua
    Lu, Peiou
    Wang, Wenzhi
    Liu, Wanyu
    Yu, Lijuan
    EJNMMI RESEARCH, 2017, 7
  • [36] Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images
    Hongkai Wang
    Zongwei Zhou
    Yingci Li
    Zhonghua Chen
    Peiou Lu
    Wenzhi Wang
    Wanyu Liu
    Lijuan Yu
    EJNMMI Research, 7
  • [37] Multiscale Texture Analysis: From 18F-FDG PET Images to Histologic Images
    Orlhac, Fanny
    Theze, Benoit
    Soussan, Michael
    Boisgard, Raphael
    Buvat, Irene
    JOURNAL OF NUCLEAR MEDICINE, 2016, 57 (11) : 1823 - 1828
  • [38] A multidomain fusion model of radiomics and deep learning to discriminate between PDAC and AIP based on 18F-FDG PET/CT images
    Wenting Wei
    Guorong Jia
    Zhongyi Wu
    Tao Wang
    Heng Wang
    Kezhen Wei
    Chao Cheng
    Zhaobang Liu
    Changjing Zuo
    Japanese Journal of Radiology, 2023, 41 : 417 - 427
  • [39] A multidomain fusion model of radiomics and deep learning to discriminate between PDAC and AIP based on 18F-FDG PET/CT images
    Wei, Wenting
    Jia, Guorong
    Wu, Zhongyi
    Wang, Tao
    Wang, Heng
    Wei, Kezhen
    Cheng, Chao
    Liu, Zhaobang
    Zuo, Changjing
    JAPANESE JOURNAL OF RADIOLOGY, 2023, 41 (04) : 417 - 427
  • [40] The value of different 18F-FDG PET/CT baseline parameters in risk stratification of stage I surgical NSCLC patients
    Hoda Anwar
    Thomas J. Vogl
    Mahasen A. Abougabal
    Frank Grünwald
    Peter Kleine
    Sherif Elrefaie
    Nour-Eldin A. Nour-Eldin
    Annals of Nuclear Medicine, 2018, 32 : 687 - 694