Deep learning derived input-function in dynamic 18F-FDG PET imaging of mice

被引:0
|
作者
Kuttner, S. [1 ,2 ]
Luppino, L. T. [2 ]
Wickstrom, K. K. [2 ]
Midtbo, N. T. D. [2 ]
Dorraji, E. [3 ]
Oteiza, A. [1 ,2 ]
Martin-Armas, M. [1 ,2 ]
Fenton, K. [2 ]
Convert, L. [4 ]
Sarrhini, O. [4 ]
Lecomte, R. [4 ]
Kampffmeyer, M. C. [2 ]
Jenssen, R. [2 ]
Axelsson, J. [5 ]
Sundset, R. [1 ,2 ]
机构
[1] Univ Hosp North Norway, Tromso, Norway
[2] UiT Arctic Univ Norway, Tromso, Norway
[3] Oslo Univ Hosp, Oslo, Norway
[4] Univ Sherbrooke, Sherbrooke, PQ, Canada
[5] Umea Univ, Umea, Sweden
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
OP-750
引用
收藏
页码:S245 / S245
页数:1
相关论文
共 50 条
  • [1] Machine learning derived input-function in a dynamic 18F-FDG PET study of mice
    Kuttner, Samuel
    Wickstrom, Kristoffer Knutsen
    Kalda, Gustav
    Dorraji, S. Esmaeil
    Martin-Armas, Montserrat
    Oteiza, Ana
    Jenssen, Robert
    Fenton, Kristin
    Sundset, Rune
    Axelsson, Jan
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2020, 6 (01)
  • [2] Deep-learning-derived input function in dynamic [18F]FDG PET imaging of mice
    Kuttner, Samuel
    Luppino, Luigi T.
    Convert, Laurence
    Sarrhini, Otman
    Lecomte, Roger
    Kampffmeyer, Michael C.
    Sundset, Rune
    Jenssen, Robert
    FRONTIERS IN NUCLEAR MEDICINE, 2024, 4
  • [3] Image-Derived Input Function from the Vena Cava for 18F-FDG PET Studies in Rats and Mice
    Lanz, Bernard
    Poitry-Yamate, Carole
    Gruetter, Rolf
    JOURNAL OF NUCLEAR MEDICINE, 2014, 55 (08) : 1380 - 1388
  • [4] Deep Learning on 18F-FDG PET Imaging for Differential Diagnosis of Parkinsonian Syndromes
    Wu, Ping
    Roy, Abhijit Guha
    Yakushev, Igor
    Li, Rui
    Conjeti, Sailesh
    Ziegler, Sibylle
    Wang, Jian
    Forster, Stefan
    Navab, Nassir
    Schwaiger, Markus
    Huang, Sung-Cheng
    Romingers, Axel
    Zuo, Chuantao
    Shi, Kuangyu
    JOURNAL OF NUCLEAR MEDICINE, 2018, 59
  • [5] A deep learning approach for 18F-FDG PET attenuation correction
    Fang Liu
    Hyungseok Jang
    Richard Kijowski
    Gengyan Zhao
    Tyler Bradshaw
    Alan B. McMillan
    EJNMMI Physics, 5
  • [6] Shortened Dynamic 18F-FDG PET
    Disselhorst, Jonathan A.
    Vriens, Dennis
    de Geus-Oei, Lioe-Fee
    Oyen, Wim J. G.
    Visser, Eric P.
    JOURNAL OF NUCLEAR MEDICINE, 2011, 52 (08) : 1330 - 1330
  • [7] A deep learning approach for 18F-FDG PET attenuation correction
    Liu, Fang
    Jang, Hyungseok
    Kijowski, Richard
    Zhao, Gengyan
    Bradshaw, Tyler
    McMillan, Alan B.
    EJNMMI PHYSICS, 2018, 5 : 1 - 15
  • [8] Iterative factor analysis : Strategy for estimating input function in dynamic 18F-FDG brain PET
    Katoh, Chietsugu
    Tomiyama, Yuuki
    Hirata, Kenji
    Shiga, Tohru
    Tamaki, Nagara
    JOURNAL OF NUCLEAR MEDICINE, 2016, 57
  • [9] Derived Input Function from Dynamic Cardiac 18F-FDG PET Images in Rodents based on the Generalized Gaussian ICA Model
    Mabrouk, R.
    Prevost, S.
    Dubeau, F.
    Bentabet, L.
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 792 - 795
  • [10] Estimation of the 18F-FDG input function in mice by use of dynamic small-animal PET and minimal blood sample data
    Ferl, Gregory Z.
    Zhang, Xiaoli
    Wu, Hsiao-Ming
    Huang, Sung-Cheng
    JOURNAL OF NUCLEAR MEDICINE, 2007, 48 (12) : 2037 - 2045