Deep learning derived input-function in dynamic 18F-FDG PET imaging of mice

被引:0
|
作者
Kuttner, S. [1 ,2 ]
Luppino, L. T. [2 ]
Wickstrom, K. K. [2 ]
Midtbo, N. T. D. [2 ]
Dorraji, E. [3 ]
Oteiza, A. [1 ,2 ]
Martin-Armas, M. [1 ,2 ]
Fenton, K. [2 ]
Convert, L. [4 ]
Sarrhini, O. [4 ]
Lecomte, R. [4 ]
Kampffmeyer, M. C. [2 ]
Jenssen, R. [2 ]
Axelsson, J. [5 ]
Sundset, R. [1 ,2 ]
机构
[1] Univ Hosp North Norway, Tromso, Norway
[2] UiT Arctic Univ Norway, Tromso, Norway
[3] Oslo Univ Hosp, Oslo, Norway
[4] Univ Sherbrooke, Sherbrooke, PQ, Canada
[5] Umea Univ, Umea, Sweden
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
OP-750
引用
收藏
页码:S245 / S245
页数:1
相关论文
共 50 条
  • [31] A deep learning framework for 18F-FDG PET imaging diagnosis in pediatric patients with temporal lobe epilepsy
    Qinming Zhang
    Yi Liao
    Xiawan Wang
    Teng Zhang
    Jianhua Feng
    Jianing Deng
    Kexin Shi
    Lin Chen
    Liu Feng
    Mindi Ma
    Le Xue
    Haifeng Hou
    Xiaofeng Dou
    Congcong Yu
    Lei Ren
    Yao Ding
    Yufei Chen
    Shuang Wu
    Zexin Chen
    Hong Zhang
    Cheng Zhuo
    Mei Tian
    European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48 : 2476 - 2485
  • [32] An Input Function Estimation Method for Dynamic Mouse 18F-FDG microPET Studies
    Dai, Xiaoqian
    Tian, Jie
    Chen, Zhe
    2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, : 3091 - 3096
  • [33] Optimisation of data processing for dynamic 18F-FDG PET of mice tumour xenografts
    Gendrin, Christelle
    Maynard, Juliana
    Gingles, Neill
    Williams, Leigh
    Parker, Gareth
    Ricketts, Sally-Ann
    JOURNAL OF NUCLEAR MEDICINE, 2012, 53
  • [34] A method for generating image-derived input function in quantitative 18F-FDG PET study based on the monotonicity of the input and output function curve
    Zhou, Shan
    Chen, Kewei
    Reiman, Eric M.
    La, De-min
    Shan, Baoci
    NUCLEAR MEDICINE COMMUNICATIONS, 2012, 33 (04) : 362 - 370
  • [35] Imaging the Evolution of Reactivation Pulmonary Tuberculosis in Mice Using 18F-FDG PET
    Murawski, Allison M.
    Gurbani, Saumya
    Harper, Jamie S.
    Klunk, Mariah
    Younes, Laurent
    Jain, Sanjay K.
    Jedynak, Bruno M.
    JOURNAL OF NUCLEAR MEDICINE, 2014, 55 (10) : 1726 - 1729
  • [36] Underestimated Role of 18F-FDG PET for HCC Evaluation and Promise of 18F-FDG PET/MR Imaging in This Setting REPLY
    Cheung, Tan To
    Ho, Chi Lai
    Chen, Sirong
    Chan, See Ching
    Poon, Ronnie T. P.
    Fan, Sheung Tat
    Lo, Chung Mau
    JOURNAL OF NUCLEAR MEDICINE, 2013, 54 (08) : 1511 - 1512
  • [37] Thoracic Staging in Lung Cancer: Prospective Comparison of 18F-FDG PET/MR Imaging and 18F-FDG PET/CT
    Heusch, Philipp
    Buchbender, Christian
    Koehler, Jens
    Nensa, Felix
    Gauler, Thomas
    Gomez, Benedikt
    Reiss, Henning
    Stamatis, Georgios
    Kuehl, Hilmar
    Hartung, Verena
    Heusner, Till A.
    JOURNAL OF NUCLEAR MEDICINE, 2014, 55 (03) : 373 - 378
  • [38] Classification of Myocardial 18F-FDG PET Uptake Patterns Using Deep Learning
    Josselyn, Nicholas
    MacLean, Matthew T.
    Jean, Christopher
    Fuchs, Ben
    Moon, Brianna F.
    Hwuang, Eileen
    Iyer, Srikant Kamesh
    Litt, Harold
    Han, Yuchi
    Kaghazchi, Fatemeh
    Bravo, Paco E.
    Witschey, Walter R.
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (04)
  • [39] Prediction of metastasis in Osteosarcoma Using 18F-FDG PET image deep learning
    Woo, S.
    Kim, W.
    Sheen, H.
    Park, J.
    Byun, B.
    Kong, C.
    Song, W.
    Lim, I.
    Lim, S.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 : S690 - S691
  • [40] Anomaly detection in chest 18F-FDG PET/CT by Bayesian deep learning
    Takahiro Nakao
    Shouhei Hanaoka
    Yukihiro Nomura
    Naoto Hayashi
    Osamu Abe
    Japanese Journal of Radiology, 2022, 40 : 730 - 739