Application of deep learning and machine learning methods to predict NSCLC patients' survival from baseline 18F-FDG PET images

被引:0
|
作者
Le, Thi Khuyen [1 ]
David, Chardin [2 ]
Contu, Sara [2 ]
Hugonnet, Florent [3 ]
Bauckneht, Matteo [4 ]
Otto, Josiane [2 ]
Girum, Kibrom [5 ]
Orlhac, Fanny [2 ,6 ]
Humbert, Olivier [2 ]
机构
[1] 3IA Cote dAzur, Nice, France
[2] Ctr Antoine Lacassagne, Nice, France
[3] Ctr Hosp Princesse Grace Monaco, Monaco, Monaco
[4] IRCCS Osped Policlin San Martino, Genoa, Italy
[5] Univ Paris Saclay, LITO Lab, U1288 Inserm, Inst Curie, Orsay, France
[6] Inst Curie, LITO, INSERM, Paris, France
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
P883
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Prediction of disease-free survival of patients with soft tissue sarcoma based on a deep learning method with 18F-FDG PET
    Lee, Inki
    Kim, Wook
    Byun, Byung Hyun
    Choi, Joon Ho
    Kim, Byung Il
    Choi, Chang Woon
    Woo, Sang-Keun
    Lim, Sang Moo
    JOURNAL OF NUCLEAR MEDICINE, 2019, 60
  • [22] A deep learning framework for 18F-FDG PET imaging diagnosis in pediatric patients with temporal lobe epilepsy
    Zhang, Qinming
    Liao, Yi
    Wang, Xiawan
    Zhang, Teng
    Feng, Jianhua
    Deng, Jianing
    Shi, Kexin
    Chen, Lin
    Feng, Liu
    Ma, Mindi
    Xue, Le
    Hou, Haifeng
    Dou, Xiaofeng
    Yu, Congcong
    Ren, Lei
    Ding, Yao
    Chen, Yufei
    Wu, Shuang
    Chen, Zexin
    Zhang, Hong
    Zhuo, Cheng
    Tian, Mei
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (08) : 2476 - 2485
  • [23] A deep learning framework for 18F-FDG PET imaging diagnosis in pediatric patients with temporal lobe epilepsy
    Qinming Zhang
    Yi Liao
    Xiawan Wang
    Teng Zhang
    Jianhua Feng
    Jianing Deng
    Kexin Shi
    Lin Chen
    Liu Feng
    Mindi Ma
    Le Xue
    Haifeng Hou
    Xiaofeng Dou
    Congcong Yu
    Lei Ren
    Yao Ding
    Yufei Chen
    Shuang Wu
    Zexin Chen
    Hong Zhang
    Cheng Zhuo
    Mei Tian
    European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48 : 2476 - 2485
  • [24] Prognostic role of baseline 18F-FDG PET/CT in DLBCL patients
    Baratto, Lucia
    Wu, Fengyu
    Minamimoto, Ryogo
    Sabile, Jean
    Advani, Ranjana
    Mittra, Erik
    JOURNAL OF NUCLEAR MEDICINE, 2016, 57
  • [25] The role of baseline 18F-FDG PET/CT for survival prognosis in NSCLC patients undergoing immunotherapy: a systematic review and meta-analysis
    Huang, Mingxing
    Zou, Yuheng
    Wang, Weichen
    Li, Qianrui
    Tian, Rong
    THERAPEUTIC ADVANCES IN MEDICAL ONCOLOGY, 2024, 16
  • [26] Strategies for deep learning-based attenuation and scatter correction of brain 18F-FDG PET images in the image domain
    Jahangir, Reza
    Kamali-Asl, Alireza
    Arabi, Hossein
    Zaidi, Habib
    MEDICAL PHYSICS, 2024, 51 (02) : 870 - 880
  • [27] Prognostic Value of Baseline 18F-FDG PET/CT to Predict Brain Metastasis Development in Melanoma Patients
    Kalantari, Forough
    Mirshahvalad, Seyed Ali
    Hoellwerth, Magdalena
    Schweighofer-Zwink, Gregor
    Huber-Schoenauer, Ursula
    Hitzl, Wolfgang
    Rendl, Gundula
    Koelblinger, Peter
    Pirich, Christian
    Beheshti, Mohsen
    CANCERS, 2024, 16 (01)
  • [28] Deep learning based generation of high-count preclinical [18F]-FDG PET images from low-count [18F]-FDG PET images
    Dutta, Kaushik
    Whitehead, Timothy
    Laforest, Richard
    Jha, Abhinav
    Shoghi, Kooresh
    JOURNAL OF NUCLEAR MEDICINE, 2022, 63
  • [29] A deep learning model for generating [18F]FDG PET Images from early-phase [18F]Florbetapir and [18F]Flutemetamol PET images
    Sanaat, Amirhossein
    Boccalini, Cecilia
    Mathoux, Gregory
    Perani, Daniela
    Frisoni, Giovanni B.
    Haller, Sven
    Montandon, Marie-Louise
    Rodriguez, Cristelle
    Giannakopoulos, Panteleimon
    Garibotto, Valentina
    Zaidi, Habib
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 (12) : 3518 - 3531
  • [30] 18F-FDG PET/CT at baseline in DLBCL patients enrolled in the GAINED protocol: A machine learning study to assess the usefulness of combining clinical, conventional and radiomics features to predict the 2-years PFS and survival
    Carlier, T.
    Frecon, G.
    Mateus, D.
    Rizkallah, M.
    Kraeber-Bodere, F.
    Kanoun, S.
    Blanc-Durand, P.
    Itti, E.
    Le Gouill, S.
    Casasnovas, R.
    Bodet-Milin, C.
    Bailly, C.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (SUPPL 1) : S409 - S409