Bottom-up Solution Synthesis of Graphene Nanoribbons with Precisely Engineered Nanopores

被引:10
|
作者
Niu, Wenhui [1 ,2 ,3 ,4 ]
Fu, Yubin [1 ,2 ,3 ,4 ]
Serra, Gianluca [5 ]
Liu, Kun [2 ,3 ]
Droste, Joern [6 ,11 ]
Lee, Yeonju [7 ,8 ]
Ling, Zhitian [9 ]
Xu, Fugui
Gonzalez, Jose D. [7 ,8 ]
Lucotti, Andrea [5 ]
Rabe, Juergen P. [7 ,8 ]
Hansen, Michael Ryan [6 ]
Pisula, Wojciech [9 ,12 ]
Blom, Paul W. M. [9 ]
Palma, Carlos-Andres [7 ,8 ,10 ]
Tommasini, Matteo [5 ]
Mai, Yiyong [4 ]
Ma, Ji [1 ,2 ,3 ]
Feng, Xinliang [1 ,2 ,3 ]
机构
[1] Max Planck Inst Microstruct Phys, Weinberg 2, D-06120 Halle, Germany
[2] Tech Univ Dresden, Ctr Adv Elect Dresden cfaed, Mommsenstr 4, D-01062 Dresden, Germany
[3] Tech Univ Dresden, Fac Chem & Food Chem, Mommsenstr 4, D-01062 Dresden, Germany
[4] Shanghai Jiao Tong Univ, Frontiers Sci Ctr Transformat Mol, Sch Chem & Chem Engn, Shanghai Key Lab Elect Insulat & Thermal Ageing, Shanghai 200240, Peoples R China
[5] Politecn Milan, Dipartimento Chim Mat & Ingn Chim G Natta, Piazza Leonardo Vinci 32, I-20133 Milan, Italy
[6] Westfal Wilhelms Univ Munster, Inst Phys Chem, Corrensstr 28-30, D-48149 Munster, Germany
[7] Humboldt Univ, Dept Phys, D-12489 Berlin, Germany
[8] Humboldt Univ, IRIS Adlershof, D-12489 Berlin, Germany
[9] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
[10] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[11] Leibniz Univ Hannover, Inst Organ Chem, Schneiderberg 1B, D-30167 Hannover, Germany
[12] Lodz Univ Technol, Fac Chem, Dept Mol Phys, Zeromskiego 116, PL-90924 Lodz, Poland
基金
欧盟地平线“2020”; 中国国家自然科学基金;
关键词
Bandgap Engineering; Graphene Nanoribbons; Porous; Precision Synthesis; In Solution; ON-SURFACE SYNTHESIS;
D O I
10.1002/anie.202305737
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The incorporation of nanopores into graphene nanostructures has been demonstrated as an efficient tool in tuning their band gaps and electronic structures. However, precisely embedding the uniform nanopores into graphene nanoribbons (GNRs) at the atomic level remains underdeveloped especially for in-solution synthesis due to the lack of efficient synthetic strategies. Herein we report the first case of solution-synthesized porous GNR (pGNR) with a fully conjugated backbone via the efficient Scholl reaction of tailor-made polyphenylene precursor (P1) bearing pre-installed hexagonal nanopores. The resultant pGNR features periodic subnanometer pores with a uniform diameter of 0.6 nm and an adjacent-pores-distance of 1.7 nm. To solidify our design strategy, two porous model compounds (1 a, 1 b) containing the same pore size as the shortcuts of pGNR, are successfully synthesized. The chemical structure and photophysical properties of pGNR are investigated by various spectroscopic analyses. Notably, the embedded periodic nanopores largely reduce the & pi;-conjugation degree and alleviate the inter-ribbon & pi;-& pi; interactions, compared to the nonporous GNRs with similar widths, affording pGNR with a notably enlarged band gap and enhanced liquid-phase processability.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] The Bottom-up Growth of Edge Specific Graphene Nanoribbons
    Nevius, M. S.
    Wang, F.
    Mathieu, C.
    Barrett, N.
    Sala, A.
    Mentes, T. O.
    Locatelli, A.
    Conrad, E. H.
    [J]. NANO LETTERS, 2014, 14 (11) : 6080 - 6086
  • [22] Atomically precise bottom-up fabrication of graphene nanoribbons
    Jinming Cai
    Pascal Ruffieux
    Rached Jaafar
    Marco Bieri
    Thomas Braun
    Stephan Blankenburg
    Matthias Muoth
    Ari P. Seitsonen
    Moussa Saleh
    Xinliang Feng
    Klaus Müllen
    Roman Fasel
    [J]. Nature, 2010, 466 : 470 - 473
  • [23] Bottom-Up Synthesis of N=13 Sulfur-Doped Graphene Nanoribbons
    Nguyen, Giang D.
    Tom, Francesca M.
    Cao, Ting
    Pedramrazi, Zahra
    Chen, Chen
    Rizzo, Daniel J.
    Joshi, Trinity
    Bronner, Christopher
    Chen, Yen-Chia
    Favaro, Marco
    Louie, Steven G.
    Fischer, Felix R.
    Crommie, Michael F.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (05): : 2684 - 2687
  • [24] Bottom-Up Synthesis of Soluble and Narrow Graphene Nanoribbons Using Alkyne Benzannulations
    Yang, Wenlong
    Lucotti, Andrea
    Tommasini, Matteo
    Chalifoux, Wesley A.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (29) : 9137 - 9144
  • [25] High yield bottom-up PECVD synthesis of graphene nanoribbons and their application in supercapacitors
    Bagley, Jacob
    Hsu, Chen-Chih
    Tseng, Wei-Shiuan
    Teague, Marcus
    Yeh, Nai-Chang
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [26] Facile bottom-up synthesis of graphene nanofragments and nanoribbons by thermal polymerization of pentacenes
    Ishii, Yosuke
    Song, Hayong
    Kato, Hidenori
    Takatori, Masashige
    Kawasaki, Shinji
    [J]. NANOSCALE, 2012, 4 (20) : 6553 - 6561
  • [27] Nanoribbons from the bottom-up
    C. Scott Hartley
    [J]. Nature Chemistry, 2014, 6 : 91 - 92
  • [28] Bottom-up synthesis of graphene nanoribbons from poly(p-phenylene-ethynylene)
    Uribe-Romo, Fernando J.
    Arslan, Hasan
    Dichtel, William R.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [29] Synergetic Bottom-Up Synthesis of Graphene Nanoribbons by Matrix-Assisted Direct Transfer
    McCurdy, Ryan D.
    Jacobse, Peter H.
    Piskun, Ilya
    Veber, Gregory C.
    Rizzo, Daniel J.
    Zuzak, Rafal
    Mutlu, Zafer
    Bokor, Jeffrey
    Crommie, Michael F.
    Fischer, Felix R.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (11) : 4174 - 4178
  • [30] Concentration Dependence of Dopant Electronic Structure in Bottom-up Graphene Nanoribbons
    Pedramrazi, Zahra
    Chen, Chen
    Zhao, Fangzhou
    Cao, Ting
    Nguyen, Giang D.
    Omrani, Arash A.
    Tsai, Hsin-Zon
    Cloke, Ryan R.
    Marangoni, Tomas
    Rizzo, Daniel J.
    Joshi, Trinity
    Bronner, Christopher
    Choi, Won-Woo
    Fischer, Felix R.
    Louie, Steven G.
    Crommie, Michael F.
    [J]. NANO LETTERS, 2018, 18 (06) : 3550 - 3556