Bottom-up Solution Synthesis of Graphene Nanoribbons with Precisely Engineered Nanopores

被引:10
|
作者
Niu, Wenhui [1 ,2 ,3 ,4 ]
Fu, Yubin [1 ,2 ,3 ,4 ]
Serra, Gianluca [5 ]
Liu, Kun [2 ,3 ]
Droste, Joern [6 ,11 ]
Lee, Yeonju [7 ,8 ]
Ling, Zhitian [9 ]
Xu, Fugui
Gonzalez, Jose D. [7 ,8 ]
Lucotti, Andrea [5 ]
Rabe, Juergen P. [7 ,8 ]
Hansen, Michael Ryan [6 ]
Pisula, Wojciech [9 ,12 ]
Blom, Paul W. M. [9 ]
Palma, Carlos-Andres [7 ,8 ,10 ]
Tommasini, Matteo [5 ]
Mai, Yiyong [4 ]
Ma, Ji [1 ,2 ,3 ]
Feng, Xinliang [1 ,2 ,3 ]
机构
[1] Max Planck Inst Microstruct Phys, Weinberg 2, D-06120 Halle, Germany
[2] Tech Univ Dresden, Ctr Adv Elect Dresden cfaed, Mommsenstr 4, D-01062 Dresden, Germany
[3] Tech Univ Dresden, Fac Chem & Food Chem, Mommsenstr 4, D-01062 Dresden, Germany
[4] Shanghai Jiao Tong Univ, Frontiers Sci Ctr Transformat Mol, Sch Chem & Chem Engn, Shanghai Key Lab Elect Insulat & Thermal Ageing, Shanghai 200240, Peoples R China
[5] Politecn Milan, Dipartimento Chim Mat & Ingn Chim G Natta, Piazza Leonardo Vinci 32, I-20133 Milan, Italy
[6] Westfal Wilhelms Univ Munster, Inst Phys Chem, Corrensstr 28-30, D-48149 Munster, Germany
[7] Humboldt Univ, Dept Phys, D-12489 Berlin, Germany
[8] Humboldt Univ, IRIS Adlershof, D-12489 Berlin, Germany
[9] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
[10] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[11] Leibniz Univ Hannover, Inst Organ Chem, Schneiderberg 1B, D-30167 Hannover, Germany
[12] Lodz Univ Technol, Fac Chem, Dept Mol Phys, Zeromskiego 116, PL-90924 Lodz, Poland
基金
欧盟地平线“2020”; 中国国家自然科学基金;
关键词
Bandgap Engineering; Graphene Nanoribbons; Porous; Precision Synthesis; In Solution; ON-SURFACE SYNTHESIS;
D O I
10.1002/anie.202305737
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The incorporation of nanopores into graphene nanostructures has been demonstrated as an efficient tool in tuning their band gaps and electronic structures. However, precisely embedding the uniform nanopores into graphene nanoribbons (GNRs) at the atomic level remains underdeveloped especially for in-solution synthesis due to the lack of efficient synthetic strategies. Herein we report the first case of solution-synthesized porous GNR (pGNR) with a fully conjugated backbone via the efficient Scholl reaction of tailor-made polyphenylene precursor (P1) bearing pre-installed hexagonal nanopores. The resultant pGNR features periodic subnanometer pores with a uniform diameter of 0.6 nm and an adjacent-pores-distance of 1.7 nm. To solidify our design strategy, two porous model compounds (1 a, 1 b) containing the same pore size as the shortcuts of pGNR, are successfully synthesized. The chemical structure and photophysical properties of pGNR are investigated by various spectroscopic analyses. Notably, the embedded periodic nanopores largely reduce the & pi;-conjugation degree and alleviate the inter-ribbon & pi;-& pi; interactions, compared to the nonporous GNRs with similar widths, affording pGNR with a notably enlarged band gap and enhanced liquid-phase processability.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Bottom-up synthesis of nitrogen-containing graphene nanoribbons from the tetrabenzopentacene molecular motif
    Feng, Zhijing
    Mazaheripour, Amir
    Dibble, David J.
    Wagner, Peter
    Czap, Gregory
    Kladnik, Gregor
    Cossaro, Albano
    Verdini, Alberto
    Floreano, Luca
    Bavdek, Gregor
    Ho, Wilson
    Comelli, Giovanni
    Cvetko, Dean
    Morgante, Alberto
    Gorodetsky, Alon A.
    [J]. CARBON, 2020, 170 : 677 - 684
  • [32] Inserting Porphyrin Quantum Dots in Bottom-Up Synthesized Graphene Nanoribbons
    Perkins, Wade
    Fischer, Felix R.
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (70) : 17687 - 17691
  • [33] A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons
    Sevincli, Haldun
    Sevik, Cem
    Cagin, Tahir
    Cuniberti, Gianaurelio
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [34] A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons
    Hâldun Sevinçli
    Cem Sevik
    Tahir Çağın
    Gianaurelio Cuniberti
    [J]. Scientific Reports, 3
  • [35] Rationally Designed Topological Quantum Dots in Bottom-Up Graphene Nanoribbons
    Rizzo, Daniel J.
    Jiang, Jingwei
    Joshi, Dharati
    Veber, Gregory
    Bronner, Christopher
    Durr, Rebecca A.
    Jacobse, Peter H.
    Cao, Ting
    Kalayjian, Alin
    Rodriguez, Henry
    Butler, Paul
    Chen, Ting
    Louie, Steven G.
    Fischer, Felix R.
    Crommie, Michael F.
    [J]. ACS NANO, 2021, 15 (12) : 20633 - 20642
  • [36] Bottom-up Synthesis and Characterization of Porous 12-Atom-Wide Armchair Graphene Nanoribbons
    Fan, Qitang
    Ruan, Zilin
    Werner, Simon
    Naumann, Tim
    Bolat, Rustem
    Martinez-Castro, Jose
    Koehler, Tabea
    Vollgraff, Tobias
    Hieringer, Wolfgang
    Mandalia, Raviraj
    Neiss, Christian
    Goerling, Andreas
    Tautz, F. Stefan
    Sundermeyer, Jo''rg
    Gottfried, J. Michael
    [J]. NANO LETTERS, 2024, 24 (35) : 10718 - 10723
  • [37] Bottom-up synthesis of multifunctional nanoporous graphene
    Moreno, Cesar
    Vilas-Varela, Manuel
    Kretz, Bernhard
    Garcia-Lekue, Aran
    Costache, Marius V.
    Paradinas, Markos
    Panighel, Mirko
    Ceballos, Gustavo
    Valenzuela, Sergio O.
    Pena, Diego
    Mugarza, Aitor
    [J]. SCIENCE, 2018, 360 (6385) : 199 - 203
  • [38] BOTTOM-UP GRAPHENE
    不详
    [J]. CHEMICAL & ENGINEERING NEWS, 2009, 87 (28) : 26 - 26
  • [39] Bottom-Up Synthesis of Liquid-Phase-Processable Graphene Nanoribbons with Near-Infrared Absorption
    Narita, Akimitsu
    Verzhbitskiy, Ivan A.
    Frederickx, Wout
    Mali, Kunal S.
    Jensen, Soeren Alkaersig
    Hansen, Michael Ryan
    Bonn, Mischa
    De Feyter, Steven
    Casiraghi, Cinzia
    Feng, Xinliang
    Muellen, Klaus
    [J]. ACS NANO, 2014, 8 (11) : 11622 - 11630
  • [40] Tuning the Electronic Properties of Atomically Precise Graphene Nanoribbons by Bottom-up Fabrication
    Hao, Zhenliang
    Zhang, Hui
    Ruan, Zilin
    Yan, Cuixia
    Lu, Jianchen
    Cai, Jinming
    [J]. CHEMNANOMAT, 2020, 6 (04) : 493 - 515