PREDICTION OF FONTAN OUTCOMES USING T2-WEIGHTED MRI RADIOMIC FEATURES AND MACHINE LEARNING

被引:0
|
作者
Prasad, Ayush
Dillman, Jonathan
Lubert, Adam
Trout, Andrew
He, Lili
Li, Hailong
机构
[1] Cincinnati Childrens Hosp Med Ctr, Cincinnati, OH USA
[2] Univ Cincinnati, Coll Med, Cincinnati, OH USA
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
1725-004
引用
收藏
页码:1618 / 1618
页数:1
相关论文
共 50 条
  • [31] T2-weighted Lung Imaging Using a 0.55-T MRI System
    Campbell-Washburn, Adrienne E.
    Malayeri, Ashkan A.
    Jones, Elizabeth C.
    Moss, Joel
    Fennelly, Kevin P.
    Olivier, Kenneth N.
    Chen, Marcus Y.
    RADIOLOGY-CARDIOTHORACIC IMAGING, 2021, 3 (03):
  • [32] Predictive value of machine learning-based T2-weighted MRI radiomics in the diagnosis of polycystic ovary syndrome
    Rona, Gunay
    Fistikcioglu, Neriman
    Serel, Tekin Ahmet
    Arifoglu, Meral
    Eser, Mehmet Bilgin
    Ozcelik, Serhat
    Aydin, Kadriye
    NORTHERN CLINICS OF ISTANBUL, 2025, 12 (01) : 69 - 75
  • [33] Prediction of Deep Myometrial Infiltration, Clinical Risk Category, Histological Type, and Lymphovascular Space Invasion in Women with Endometrial Cancer Based on Clinical and T2-Weighted MRI Radiomic Features
    Li, Xingfeng
    Dessi, Michele
    Marcus, Diana
    Russell, James
    Aboagye, Eric O. O.
    Ellis, Laura Burney
    Sheeka, Alexander
    Park, Won-Ho Edward
    Bharwani, Nishat
    Ghaem-Maghami, Sadaf
    Rockall, Andrea G. G.
    CANCERS, 2023, 15 (08)
  • [34] ASSESSMENT OF BRAIN MATURATION BY T2-WEIGHTED MRI
    HASSINK, RI
    HILTBRUNNER, B
    MULLER, S
    LUTSCHG, J
    NEUROPEDIATRICS, 1992, 23 (02) : 72 - 74
  • [35] Radiomics of locally advanced rectal cancer: machine learning-based prediction of response to neoadjuvant chemoradiotherapy using pre-treatment sagittal T2-weighted MRI
    Aytul Hande Yardimci
    Burak Kocak
    Ipek Sel
    Hasan Bulut
    Ceyda Turan Bektas
    Merve Cin
    Nevra Dursun
    Hasan Bektas
    Ozlem Mermut
    Veysi Hakan Yardimci
    Ozgur Kilickesmez
    Japanese Journal of Radiology, 2023, 41 : 71 - 82
  • [36] Radiomics of locally advanced rectal cancer: machine learning-based prediction of response to neoadjuvant chemoradiotherapy using pre-treatment sagittal T2-weighted MRI
    Yardimci, Aytul Hande
    Kocak, Burak
    Sel, Ipek
    Bulut, Hasan
    Bektas, Ceyda Turan
    Cin, Merve
    Dursun, Nevra
    Bektas, Hasan
    Mermut, Ozlem
    Yardimci, Veysi Hakan
    Kilickesmez, Ozgur
    JAPANESE JOURNAL OF RADIOLOGY, 2023, 41 (01) : 71 - 82
  • [37] Usefulness of MRI-based radiomic features for distinguishing Warthin tumor from pleomorphic adenoma: performance assessment using T2-weighted and post-contrast T1-weighted MR images
    Faggioni, Lorenzo
    Gabelloni, Michela
    De Vietro, Fabrizio
    Frey, Jessica
    Mendola, Vincenzo
    Cavallero, Diletta
    Borgheresi, Rita
    Tumminello, Lorenzo
    Shortrede, Jorge
    Morganti, Riccardo
    Seccia, Veronica
    Coppola, Francesca
    Cioni, Dania
    Neri, Emanuele
    EUROPEAN JOURNAL OF RADIOLOGY OPEN, 2022, 9
  • [38] Intracranial meningioma surveillance using volumetrics from T2-weighted MRI
    Raban, David
    Patel, Sohil H.
    Honce, Justin M.
    Rubinstein, David
    DeWitt, Peter E.
    Timpone, Vincent M.
    JOURNAL OF NEUROIMAGING, 2022, 32 (01) : 134 - 140
  • [39] Prostate Segmentation in MRI Using Fused T2-Weighted and Elastography Images
    Nir, Guy
    Sahebjavaher, Ramin S.
    Baghani, Ali
    Sinkus, Ralph
    Salcudean, Septimiu E.
    MEDICAL IMAGING 2014: IMAGE PROCESSING, 2014, 9034
  • [40] The Potential for Deep Learning Reconstruction to Improve the Quality of T2-weighted Prostate MRI
    Turkbey, Baris
    RADIOLOGY, 2023, 308 (03)