PREDICTION OF FONTAN OUTCOMES USING T2-WEIGHTED MRI RADIOMIC FEATURES AND MACHINE LEARNING

被引:0
|
作者
Prasad, Ayush
Dillman, Jonathan
Lubert, Adam
Trout, Andrew
He, Lili
Li, Hailong
机构
[1] Cincinnati Childrens Hosp Med Ctr, Cincinnati, OH USA
[2] Univ Cincinnati, Coll Med, Cincinnati, OH USA
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
1725-004
引用
收藏
页码:1618 / 1618
页数:1
相关论文
共 50 条
  • [41] A Machine Learning-Based Unenhanced Radiomics Approach to Distinguishing Between Benign and Malignant Breast Lesions Using T2-Weighted and Diffusion-Weighted MRI
    Liu, Yulu
    Jia, Xiaoxuan
    Zhao, Jiaqi
    Peng, Yuan
    Yao, Xun
    Hu, Xuege
    Cui, Jingjing
    Chen, Haoquan
    Chen, Xiufeng
    Wu, Jing
    Hong, Nan
    Wang, Shu
    Wang, Yi
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2024, 60 (02) : 600 - 612
  • [42] Using quantitative features extracted from T2-weighted MRI to improve breast MRI computer-aided diagnosis (CAD)
    Gallego-Ortiz, Cristina
    Martel, Anne L.
    PLOS ONE, 2017, 12 (11):
  • [43] Reproducibility Analysis of Radiomic Features on T2-weighted MR Images after Processing and Segmentation Alterations in Neuroblastoma Tumors
    Veiga-Canuto, Diana
    Fernandez-Paton, Matias
    Alberich, Leonor Cerda
    Pastor, Ana Jimenez
    Maya, Armando Gomis
    Sierra, Jose Miguel Carot
    Nebot, Cinta Sanguesa
    de las Heras, Blanca Martinez
    Poetschger, Ulrike
    Taschner-Mandl, Sabine
    Neri, Emanuele
    Canete, Adela
    Ladenstein, Ruth
    Hero, Barbara
    Alberich-Bayarri, Angel
    Marti-Bonmati, Luis
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2024, 6 (04)
  • [44] Using block-based multiparameter representation to detect tumor features on T2-weighted brain MRI images
    Lau, P. Y.
    Ozawa, S.
    Voon, F. C. T.
    METHODS OF INFORMATION IN MEDICINE, 2007, 46 (02) : 236 - 241
  • [45] A multicenter study on radiomic features from T2-weighted images of a customized MR pelvic phantom setting the basis for robust radiomic models in clinics
    Bianchini, Linda
    Santinha, Joao
    Loucao, Nuno
    Figueiredo, Mario
    Botta, Francesca
    Origgi, Daniela
    Cremonesi, Marta
    Cassano, Enrico
    Papanikolaou, Nikolaos
    Lascialfari, Alessandro
    MAGNETIC RESONANCE IN MEDICINE, 2021, 85 (03) : 1713 - 1726
  • [46] Invasive ductal breast cancer molecular subtype prediction by MRI radiomic and clinical features based on machine learning
    Sheng, Weiyong
    Xia, Shouli
    Wang, Yaru
    Yan, Lizhao
    Ke, Songqing
    Mellisa, Evelyn
    Gong, Fen
    Zheng, Yun
    Tang, Tiansheng
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [47] Progressive myelopathy with hyperintensity on T2-weighted spinal MRI
    Takahashi, Kazuya
    Komai, Kiyonobu
    Ishida, Chiho
    Tagami, Atsurou
    Machiya, Tomohiko
    Shima, Keisuke
    JOURNAL OF CLINICAL NEUROSCIENCE, 2010, 17 (01) : 85 - +
  • [48] Deep learning-based prediction of cervical canal stenosis from mid-sagittal T2-weighted MRI
    Rhee, Wounsuk
    Park, Sung Cheol
    Kim, Hyoungmin
    Chang, Bong-Soon
    Chang, Sam Yeol
    SKELETAL RADIOLOGY, 2025,
  • [49] Editorial for "A Machine Learning-Based Unenhanced Radiomics Approach to Distinguishing Between Benign and Malignant Breast Lesions Using T2-Weighted and Diffusion-Weighted MRI"
    Li, Weiguo
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2024, 60 (02) : 613 - 614
  • [50] Publisher Correction: Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis
    Takahiro Nakamoto
    Wataru Takahashi
    Akihiro Haga
    Satoshi Takahashi
    Shigeru Kiryu
    Kanabu Nawa
    Takeshi Ohta
    Sho Ozaki
    Yuki Nozawa
    Shota Tanaka
    Akitake Mukasa
    Keiichi Nakagawa
    Scientific Reports, 10