PREDICTION OF FONTAN OUTCOMES USING T2-WEIGHTED MRI RADIOMIC FEATURES AND MACHINE LEARNING

被引:0
|
作者
Prasad, Ayush
Dillman, Jonathan
Lubert, Adam
Trout, Andrew
He, Lili
Li, Hailong
机构
[1] Cincinnati Childrens Hosp Med Ctr, Cincinnati, OH USA
[2] Univ Cincinnati, Coll Med, Cincinnati, OH USA
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
1725-004
引用
收藏
页码:1618 / 1618
页数:1
相关论文
共 50 条
  • [1] Machine Learning Prediction of Liver Stiffness Using Clinical and T2-Weighted MRI Radiomic Data
    He, Lili
    Li, Hailong
    Dudley, Jonathan A.
    Maloney, Thomas C.
    Brady, Samuel L.
    Somasundaram, Elanchezhian
    Trout, Andrew T.
    Dillman, Jonathan R.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 213 (03) : 592 - 601
  • [2] Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI
    Renato Cuocolo
    Lorenzo Ugga
    Domenico Solari
    Sergio Corvino
    Alessandra D’Amico
    Daniela Russo
    Paolo Cappabianca
    Luigi Maria Cavallo
    Andrea Elefante
    Neuroradiology, 2020, 62 : 1649 - 1656
  • [3] Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI
    Cuocolo, Renato
    Ugga, Lorenzo
    Solari, Domenico
    Corvino, Sergio
    D'Amico, Alessandra
    Russo, Daniela
    Cappabianca, Paolo
    Cavallo, Luigi Maria
    Elefante, Andrea
    NEURORADIOLOGY, 2020, 62 (12) : 1649 - 1656
  • [4] Robust Radiomic Classification Models Using T2-Weighted MRI Geometrical and Texture Features
    Rodriguez, A.
    Fisher, S.
    Folkert, M.
    Chhabra, A.
    Wang, J.
    MEDICAL PHYSICS, 2017, 44 (06) : 3082 - 3083
  • [5] Machine Learning Diagnosis of Small- Bowel Crohn Disease Using T2-Weighted MRI Radiomic and Clinical Data
    Liu, Richard X.
    Li, Hailong
    Towbin, Alexander J.
    Abu Ata, Nadeen
    Smith, Ethan A.
    Tkach, Jean A.
    Denson, Lee A.
    He, Lili
    Dillman, Jonathan R.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2024, 222 (01)
  • [6] T2-Weighted MRI Radiomic Features Predict Prostate Cancer Presence and Eventual Biochemical Recurrence
    Duenweg, Savannah R.
    Bobholz, Samuel A.
    Barrett, Michael J.
    Lowman, Allison K.
    Winiarz, Aleksandra
    Nath, Biprojit
    Stebbins, Margaret
    Bukowy, John
    Iczkowski, Kenneth A.
    Jacobsohn, Kenneth M.
    Vincent-Sheldon, Stephanie
    Laviolette, Peter S.
    CANCERS, 2023, 15 (18)
  • [7] Weibull parametric model for survival analysis in women with endometrial cancer using clinical and T2-weighted MRI radiomic features
    Li, Xingfeng
    Marcus, Diana
    Russell, James
    Aboagye, Eric O.
    Ellis, Laura Burney
    Sheeka, Alexander
    Park, Won-Ho Edward
    Bharwani, Nishat
    Ghaem-Maghami, Sadaf
    Rockall, Andrea G.
    BMC MEDICAL RESEARCH METHODOLOGY, 2024, 24 (01)
  • [8] T2-Weighted Liver MRI Using the MultiVane Technique at 3T: Comparison with Conventional T2-Weighted MRI
    Kang, Kyung A.
    Kim, Young Kon
    Kim, EunJu
    Jeong, Woo Kyoung
    Choi, Dongil
    Lee, Won Jae
    Jung, Sin-Ho
    Baek, Sun-Young
    KOREAN JOURNAL OF RADIOLOGY, 2015, 16 (05) : 1038 - 1046
  • [9] Overall Survival Prediction in Glioblastoma With Radiomic Features Using Machine Learning
    Baid, Ujjwal
    Rane, Swapnil U.
    Talbar, Sanjay
    Gupta, Sudeep
    Thakur, Meenakshi H.
    Moiyadi, Aliasgar
    Mahajan, Abhishek
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14
  • [10] DeepSWI: Using Deep Learning to Enhance Susceptibility Contrast on T2-Weighted MRI
    Genc, Ozan
    Morrison, Melanie A.
    Villanueva-Meyer, Javier E.
    Burns, Brian
    Hess, Christopher P.
    Banerjee, Suchandrima
    Lupo, Janine M.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 58 (04) : 1200 - 1210