Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI

被引:0
|
作者
Renato Cuocolo
Lorenzo Ugga
Domenico Solari
Sergio Corvino
Alessandra D’Amico
Daniela Russo
Paolo Cappabianca
Luigi Maria Cavallo
Andrea Elefante
机构
[1] University of Naples “Federico II”,Department of Advanced Biomedical Sciences
[2] University of Naples “Federico II”,Department of Neurosciences, Reproductive and Odontostomatological Sciences, Division of Neurosurgery
来源
Neuroradiology | 2020年 / 62卷
关键词
Machine learning; Radiomics; Magnetic resonance imaging; Pituitary adenoma; Consistency;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1649 / 1656
页数:7
相关论文
共 50 条
  • [1] Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI
    Cuocolo, Renato
    Ugga, Lorenzo
    Solari, Domenico
    Corvino, Sergio
    D'Amico, Alessandra
    Russo, Daniela
    Cappabianca, Paolo
    Cavallo, Luigi Maria
    Elefante, Andrea
    NEURORADIOLOGY, 2020, 62 (12) : 1649 - 1656
  • [2] Machine Learning Prediction of Liver Stiffness Using Clinical and T2-Weighted MRI Radiomic Data
    He, Lili
    Li, Hailong
    Dudley, Jonathan A.
    Maloney, Thomas C.
    Brady, Samuel L.
    Somasundaram, Elanchezhian
    Trout, Andrew T.
    Dillman, Jonathan R.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 213 (03) : 592 - 601
  • [3] PREDICTION OF FONTAN OUTCOMES USING T2-WEIGHTED MRI RADIOMIC FEATURES AND MACHINE LEARNING
    Prasad, Ayush
    Dillman, Jonathan
    Lubert, Adam
    Trout, Andrew
    He, Lili
    Li, Hailong
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 81 (08) : 1618 - 1618
  • [4] Machine Learning Diagnosis of Small- Bowel Crohn Disease Using T2-Weighted MRI Radiomic and Clinical Data
    Liu, Richard X.
    Li, Hailong
    Towbin, Alexander J.
    Abu Ata, Nadeen
    Smith, Ethan A.
    Tkach, Jean A.
    Denson, Lee A.
    He, Lili
    Dillman, Jonathan R.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2024, 222 (01)
  • [5] Preoperative evaluation of tumour consistency in pituitary macroadenomas: a machine learning-based histogram analysis on conventional T2-weighted MRI
    Amalya Zeynalova
    Burak Kocak
    Emine Sebnem Durmaz
    Nil Comunoglu
    Kerem Ozcan
    Gamze Ozcan
    Okan Turk
    Necmettin Tanriover
    Naci Kocer
    Osman Kizilkilic
    Civan Islak
    Neuroradiology, 2019, 61 : 767 - 774
  • [6] Preoperative evaluation of tumour consistency in pituitary macroadenomas: a machine learning-based histogram analysis on conventional T2-weighted MRI
    Zeynalova, Amalya
    Kocak, Burak
    Durmaz, Emine Sebnem
    Comunoglu, Nil
    Ozcan, Kerem
    Ozcan, Gamze
    Turk, Okan
    Tanriover, Necmettin
    Kocer, Naci
    Kizilkilic, Osman
    Islak, Civan
    NEURORADIOLOGY, 2019, 61 (07) : 767 - 774
  • [7] Tumor to Cerebellar Peduncle T2-Weighted Imaging Intensity Ratio Fails to Predict Pituitary Adenoma Consistency
    Mastorakos, Panagiotis
    Mehta, Gautam U.
    Chatrath, Ajay
    Moosa, Shayan
    Lopes, Maria-Beatriz
    Payne, Spencer C.
    Jane, John A., Jr.
    JOURNAL OF NEUROLOGICAL SURGERY PART B-SKULL BASE, 2019, 80 (03) : 252 - 257
  • [8] MRI ASSESSMENT OF PARATHYROID ADENOMA - THE VALUE OF T2-WEIGHTED SEQUENCES
    BRULE, JM
    DEGEORGES, A
    MAUSS, Y
    JOST, JB
    WENGER, JJ
    LEBRAS, Y
    SCHEIBER, C
    MARESCAUX, J
    CHAMBRON, J
    ANNALES DE RADIOLOGIE, 1989, 32 (06) : 457 - 466
  • [9] MRI ASSESSMENT OF PARATHYROID ADENOMA - THE VALUE OF T2-WEIGHTED SEQUENCES
    BRULE, JM
    DEGEORGES, A
    MAUSS, Y
    JOST, JB
    WENGER, JJ
    LEBRAS, Y
    SCHEIBER, C
    MARESCAUX, J
    CHAMBRON, J
    SEMAINE DES HOPITAUX, 1990, 66 (25): : 1513 - 1522
  • [10] Machine Learning Prediction of Pituitary Macroadenoma Consistency: Utilizing Demographic Data and Brain MRI Parameters
    Pereira, Fernanda Veloso
    Ferreira, Davi
    Garmes, Heraldo
    Zantut-Wittmann, Denise Engelbrecht
    Rogerio, Fabio
    Fabbro, Mateus Dal
    Formentin, Cleiton
    Forster, Carlos Henrique Quartucci
    Reis, Fabiano
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2025,