Global Context Attention for Robust Visual Tracking

被引:2
|
作者
Choi, Janghoon [1 ]
机构
[1] Kyungpook Natl Univ, Grad Sch Data Sci, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
visual tracking; object tracking; attention models; model-free tracking;
D O I
10.3390/s23052695
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Although there have been recent advances in Siamese-network-based visual tracking methods where they show high performance metrics on numerous large-scale visual tracking benchmarks, persistent challenges regarding the distractor objects with similar appearances to the target object still remain. To address these aforementioned issues, we propose a novel global context attention module for visual tracking, where the proposed module can extract and summarize the holistic global scene information to modulate the target embedding for improved discriminability and robustness. Our global context attention module receives a global feature correlation map to elicit the contextual information from a given scene and generates the channel and spatial attention weights to modulate the target embedding to focus on the relevant feature channels and spatial parts of the target object. Our proposed tracking algorithm is tested on large-scale visual tracking datasets, where we show improved performance compared to the baseline tracking algorithm while achieving competitive performance with real-time speed. Additional ablation experiments also validate the effectiveness of the proposed module, where our tracking algorithm shows improvements in various challenging attributes of visual tracking.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Incremental focus of attention for robust visual tracking
    Toyama, K
    Hager, GD
    1996 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1996, : 189 - 195
  • [2] Object Tracking Based on Global Context Attention
    Wang, Yucheng
    Chen, Xi
    Mao, Zhongjie
    Yan, Jia
    INTERNATIONAL JOURNAL OF COGNITIVE INFORMATICS AND NATURAL INTELLIGENCE, 2021, 15 (04)
  • [3] Robust Visual Tracking Based On Selective Attention Shift
    Liu, Hong
    Shi, Ying
    2009 IEEE CONTROL APPLICATIONS CCA & INTELLIGENT CONTROL (ISIC), VOLS 1-3, 2009, : 1176 - 1179
  • [4] Robust visual tracking with channel attention and focal loss
    Li, Dongdong
    Wen, Gongjian
    Kuai, Yangliu
    Zhu, Lingxiao
    Porikli, Fatih
    NEUROCOMPUTING, 2020, 401 : 295 - 307
  • [5] ROBUST VISUAL TRACKING USING FEATURE-BASED VISUAL ATTENTION
    Zhang, Shengping
    Yao, Hongxun
    Liu, Shaohui
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 1150 - 1153
  • [6] Robust visual tracking via global context regularized Locality-constrained Linear Coding
    Kang, Bin
    Liang, Dong
    Yang, Zhenzhen
    OPTIK, 2019, 183 : 232 - 240
  • [7] ROBUST VISUAL TRACKING VIA CONTEXT OBJECTS COMPUTING
    Sun, Zhongqian
    Yao, Hongxun
    Zhang, Shengping
    Sun, Xin
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 509 - 512
  • [8] Robust visual tracking based on spatial context pyramid
    Tang, Fuhui
    Zhang, Xiaoyu
    Lu, Xiankai
    Hu, Shiqiang
    Zhang, Huanlong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (15) : 21065 - 21084
  • [9] Robust Visual Tracking via Exclusive Context Modeling
    Zhang, Tianzhu
    Ghanem, Bernard
    Liu, Si
    Xu, Changsheng
    Ahuja, Narendra
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (01) : 51 - 63
  • [10] Robust visual tracking based on spatial context pyramid
    Fuhui Tang
    Xiaoyu Zhang
    Xiankai Lu
    Shiqiang Hu
    Huanlong Zhang
    Multimedia Tools and Applications, 2019, 78 : 21065 - 21084