Global Context Attention for Robust Visual Tracking

被引:2
|
作者
Choi, Janghoon [1 ]
机构
[1] Kyungpook Natl Univ, Grad Sch Data Sci, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
visual tracking; object tracking; attention models; model-free tracking;
D O I
10.3390/s23052695
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Although there have been recent advances in Siamese-network-based visual tracking methods where they show high performance metrics on numerous large-scale visual tracking benchmarks, persistent challenges regarding the distractor objects with similar appearances to the target object still remain. To address these aforementioned issues, we propose a novel global context attention module for visual tracking, where the proposed module can extract and summarize the holistic global scene information to modulate the target embedding for improved discriminability and robustness. Our global context attention module receives a global feature correlation map to elicit the contextual information from a given scene and generates the channel and spatial attention weights to modulate the target embedding to focus on the relevant feature channels and spatial parts of the target object. Our proposed tracking algorithm is tested on large-scale visual tracking datasets, where we show improved performance compared to the baseline tracking algorithm while achieving competitive performance with real-time speed. Additional ablation experiments also validate the effectiveness of the proposed module, where our tracking algorithm shows improvements in various challenging attributes of visual tracking.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Robust Visual Tracking by Hierarchical Convolutional Features and Historical Context
    Hu, Zexi
    Tian, Xuhong
    Gao, Yuefang
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT III, 2017, 10636 : 425 - 434
  • [22] Triple attention and global reasoning Siamese networks for visual tracking
    Shu, Ping
    Xu, Keying
    Bao, Hua
    MACHINE VISION AND APPLICATIONS, 2022, 33 (04)
  • [23] Triple attention and global reasoning Siamese networks for visual tracking
    Ping Shu
    Keying Xu
    Hua Bao
    Machine Vision and Applications, 2022, 33
  • [24] Visual object tracking using spatial Context Information and Global tracking skills
    Li, Shuxiao
    Wu, Ou
    Zhu, Chengfei
    Chang, Hongxing
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2014, 125 : 1 - 15
  • [25] LGTrack: Exploiting Local and Global Properties for Robust Visual Tracking
    Liu, Chang
    Zhao, Jie
    Bo, Chunjuan
    Li, Shengming
    Wang, Dong
    Lu, Huchuan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (09) : 8161 - 8171
  • [26] Transductive learning with global and local constraints for robust visual tracking
    Zha Y.-F.
    Bi D.-Y.
    Yang Y.
    Dong S.-P.
    Luo N.
    Zidonghua Xuebao/Acta Automatica Sinica, 2010, 36 (08): : 1084 - 1090
  • [27] Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking
    Wang, Ning
    Zhou, Wengang
    Wang, Jie
    Li, Houqiang
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 1571 - 1580
  • [28] Learning Cascaded Context-aware Framework for Robust Visual Tracking
    Ma, Ding
    Wu, Xiangqian
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 28 - 36
  • [29] Online learning 3D context for robust visual tracking
    Zhong, Bineng
    Shen, Yingju
    Chen, Yan
    Xie, Weibo
    Cui, Zhen
    Zhang, Hongbo
    Chen, Duansheng
    Wang, Tian
    Liu, Xin
    Peng, Shujuan
    Gou, Jin
    Du, Jixiang
    Wang, Jing
    Zheng, Wenming
    NEUROCOMPUTING, 2015, 151 : 710 - 718
  • [30] Robust Visual Tracking with Dual Spatio-Temporal Context Trackers
    Sun, Shiyan
    Zhang, Hong
    Yuan, Ding
    SEVENTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2015), 2015, 9817