Global Context Attention for Robust Visual Tracking

被引:2
|
作者
Choi, Janghoon [1 ]
机构
[1] Kyungpook Natl Univ, Grad Sch Data Sci, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
visual tracking; object tracking; attention models; model-free tracking;
D O I
10.3390/s23052695
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Although there have been recent advances in Siamese-network-based visual tracking methods where they show high performance metrics on numerous large-scale visual tracking benchmarks, persistent challenges regarding the distractor objects with similar appearances to the target object still remain. To address these aforementioned issues, we propose a novel global context attention module for visual tracking, where the proposed module can extract and summarize the holistic global scene information to modulate the target embedding for improved discriminability and robustness. Our global context attention module receives a global feature correlation map to elicit the contextual information from a given scene and generates the channel and spatial attention weights to modulate the target embedding to focus on the relevant feature channels and spatial parts of the target object. Our proposed tracking algorithm is tested on large-scale visual tracking datasets, where we show improved performance compared to the baseline tracking algorithm while achieving competitive performance with real-time speed. Additional ablation experiments also validate the effectiveness of the proposed module, where our tracking algorithm shows improvements in various challenging attributes of visual tracking.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] ROBUST VISUAL TRACKING WITH CONTEXT-BASED ACTIVE OCCLUSION RECOGNITION
    Gu, Yueyang
    Qiao, Yu
    Xu, Kuan
    Xu, Hang
    Fang, Xingqi
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 1878 - 1882
  • [32] Real-time robust visual tracking based on spatial attention mechanism
    Ma S.
    Zhang Z.
    Pu L.
    Hou Z.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (02): : 419 - 432
  • [33] An Eye-Tracking Dataset for Visual Attention Modelling in a Virtual Museum Context
    Zhou, Yunzhan
    Feng, Tian
    Shuai, Shihui
    Li, Xiangdong
    Sun, Lingyun
    Duh, Henry B. L.
    17TH ACM SIGGRAPH INTERNATIONAL CONFERENCE ON VIRTUAL-REALITY CONTINUUM AND ITS APPLICATIONS IN INDUSTRY (VRCAI 2019), 2019,
  • [34] A Robust and Reliable Visual Tracking Method with the Global and Local Correlation Filters
    Wei, Yanxia
    Jiang, Zhen
    Zhang, Hongli
    Chen, Dongxun
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2019, 124 : 113 - 114
  • [35] Robust Visual Tracking via Local-Global Correlation Filter
    Fan, Heng
    Xiang, Jinhai
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 4025 - 4031
  • [36] Visual Tracking Algorithm Based on Global Context and Feature Dimensionality Reduction
    Sun Yanjing
    Wang Sainan
    Shi Yunkai
    Yun Xiao
    Shi Wenjuan
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (09) : 2135 - 2142
  • [37] Robust Online Learned Spatio-Temporal Context Model for Visual Tracking
    Wen, Longyin
    Cai, Zhaowei
    Lei, Zhen
    Yi, Dong
    Li, Stan Z.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (02) : 785 - 796
  • [38] Robust visual tracking via weighted spatio-temporal context learning
    Xu, Jian-Qiang
    Lu, Yao
    Zidonghua Xuebao/Acta Automatica Sinica, 2015, 41 (11): : 1901 - 1912
  • [39] AiATrack: Attention in Attention for Transformer Visual Tracking
    Gao, Shenyuan
    Zhou, Chunluan
    Ma, Chao
    Wang, Xinggang
    Yuan, Junsong
    COMPUTER VISION, ECCV 2022, PT XXII, 2022, 13682 : 146 - 164
  • [40] Visual tracking with multilevel feature, similarity attention, color constraint, and global redetection
    Song Guiling
    Zhang Jingyi
    Xue Feng
    Lu Ru
    Yang Qin
    Ming Anlong
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2021, 18 (05)