Robust Visual Tracking via Exclusive Context Modeling

被引:47
|
作者
Zhang, Tianzhu [1 ,2 ]
Ghanem, Bernard [1 ,3 ]
Liu, Si [4 ]
Xu, Changsheng [2 ]
Ahuja, Narendra [5 ]
机构
[1] Adv Digital Sci Ctr, Singapore 138632, Singapore
[2] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
[3] King Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi Arabia
[4] Chinese Acad Sci, Inst Informat Engn, Beijing 100190, Peoples R China
[5] Univ Illinois, Beckman Inst, Dept Elect & Comp Engn, Coordinated Sci Lab, Urbana, IL 61801 USA
基金
中国国家自然科学基金;
关键词
Contextual information; exclusive sparse learning; particle filter; tracking; OBJECT TRACKING; CLASSIFICATION;
D O I
10.1109/TCYB.2015.2393307
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we formulate particle filter-based object tracking as an exclusive sparse learning problem that exploits contextual information. To achieve this goal, we propose the context-aware exclusive sparse tracker (CEST) to model particle appearances as linear combinations of dictionary templates that are updated dynamically. Learning the representation of each particle is formulated as an exclusive sparse representation problem, where the overall dictionary is composed of multiple group dictionaries that can contain contextual information. With context, CEST is less prone to tracker drift. Interestingly, we show that the popular L-1 tracker [1] is a special case of our CEST formulation. The proposed learning problem is efficiently solved using an accelerated proximal gradient method that yields a sequence of closed form updates. To make the tracker much faster, we reduce the number of learning problems to be solved by using the dual problem to quickly and systematically rank and prune particles in each frame. We test our CEST tracker on challenging benchmark sequences that involve heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that CEST consistently outperforms state-of-the-art trackers.
引用
收藏
页码:51 / 63
页数:13
相关论文
共 50 条
  • [1] ROBUST VISUAL TRACKING VIA CONTEXT OBJECTS COMPUTING
    Sun, Zhongqian
    Yao, Hongxun
    Zhang, Shengping
    Sun, Xin
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 509 - 512
  • [2] Robust Visual Tracking via Appearance Modeling and Sparse Representation
    Li, Ming
    Ma, Fanglan
    Nian, Fuzhong
    JOURNAL OF COMPUTERS, 2014, 9 (07) : 1612 - 1619
  • [3] Robust visual tracking via weighted spatio-temporal context learning
    Xu, Jian-Qiang
    Lu, Yao
    Zidonghua Xuebao/Acta Automatica Sinica, 2015, 41 (11): : 1901 - 1912
  • [4] Robust Object Modeling for Visual Tracking
    Cai, Yidong
    Liu, Jie
    Tang, Jie
    Wu, Gangshan
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 9555 - 9566
  • [5] Global Context Attention for Robust Visual Tracking
    Choi, Janghoon
    SENSORS, 2023, 23 (05)
  • [6] An Efficient and Robust Visual Tracking via Color-Based Context Prior Model
    Yu, Chunlei
    Zhao, Baojun
    Zhang, Zengshuo
    Li, Maowen
    IMAGE AND GRAPHICS (ICIG 2017), PT I, 2017, 10666 : 70 - 84
  • [7] Robust visual tracking based on spatial context pyramid
    Tang, Fuhui
    Zhang, Xiaoyu
    Lu, Xiankai
    Hu, Shiqiang
    Zhang, Huanlong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (15) : 21065 - 21084
  • [8] Robust visual tracking based on spatial context pyramid
    Fuhui Tang
    Xiaoyu Zhang
    Xiankai Lu
    Shiqiang Hu
    Huanlong Zhang
    Multimedia Tools and Applications, 2019, 78 : 21065 - 21084
  • [9] Robust visual tracking via bag of superpixels
    Fan, Heng
    Xiang, Jinhai
    Zhao, Liang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (14) : 8781 - 8798
  • [10] ROBUST VISUAL TRACKING VIA RANKING SVM
    Bai, Yancheng
    Tang, Ming
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 517 - 520