Minimax properties of Dirichlet kernel density estimators

被引:3
|
作者
Bertin, Karine [1 ]
Genest, Christian [2 ]
Klutchnikoff, Nicolas [3 ]
Ouimet, Frederic [2 ,4 ]
机构
[1] Univ Valparaiso, CIMFAV INGEMAT, Gen Cruz 222, Valparaiso, Chile
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 0B9, Canada
[3] Univ Rennes, CNRS, IRMAR, UMR 6625, F-35000 Rennes, France
[4] Univ Montreal, Ctr Rech Math, Montreal, PQ H3T 1J4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Beta kernel; Boundary bias; Compositional data; Dirichlet kernel; L p loss; Minimax estimation; Simplex; BOUNDS;
D O I
10.1016/j.jmva.2023.105158
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the asymptotic behavior in /3-Holder spaces, and under Lp losses, of a Dirichlet kernel density estimator proposed by Aitchison and Lauder (1985) for the analysis of compositional data. In recent work, Ouimet and Tolosana-Delgado (2022) established the uniform strong consistency and asymptotic normality of this estimator. As a complement, it is shown here that the Aitchison-Lauder estimator can achieve the minimax rate asymptotically for a suitable choice of bandwidth whenever (p, /3) E [1, 3) x (0, 2] or (p, /3) E Ad, where Ad is a specific subset of [3, 4) x (0, 2] that depends on the dimension d of the Dirichlet kernel. It is also shown that this estimator cannot be minimax when either p E [4, infinity) or /3 E (2, infinity). These results extend to the multivariate case, and also rectify in a minor way, earlier findings of Bertin and Klutchnikoff (2011) concerning the minimax properties of Beta kernel estimators. (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:16
相关论文
共 50 条