Minimax properties of Dirichlet kernel density estimators

被引:3
|
作者
Bertin, Karine [1 ]
Genest, Christian [2 ]
Klutchnikoff, Nicolas [3 ]
Ouimet, Frederic [2 ,4 ]
机构
[1] Univ Valparaiso, CIMFAV INGEMAT, Gen Cruz 222, Valparaiso, Chile
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 0B9, Canada
[3] Univ Rennes, CNRS, IRMAR, UMR 6625, F-35000 Rennes, France
[4] Univ Montreal, Ctr Rech Math, Montreal, PQ H3T 1J4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Beta kernel; Boundary bias; Compositional data; Dirichlet kernel; L p loss; Minimax estimation; Simplex; BOUNDS;
D O I
10.1016/j.jmva.2023.105158
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the asymptotic behavior in /3-Holder spaces, and under Lp losses, of a Dirichlet kernel density estimator proposed by Aitchison and Lauder (1985) for the analysis of compositional data. In recent work, Ouimet and Tolosana-Delgado (2022) established the uniform strong consistency and asymptotic normality of this estimator. As a complement, it is shown here that the Aitchison-Lauder estimator can achieve the minimax rate asymptotically for a suitable choice of bandwidth whenever (p, /3) E [1, 3) x (0, 2] or (p, /3) E Ad, where Ad is a specific subset of [3, 4) x (0, 2] that depends on the dimension d of the Dirichlet kernel. It is also shown that this estimator cannot be minimax when either p E [4, infinity) or /3 E (2, infinity). These results extend to the multivariate case, and also rectify in a minor way, earlier findings of Bertin and Klutchnikoff (2011) concerning the minimax properties of Beta kernel estimators. (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:16
相关论文
共 50 条
  • [21] MODEL CENTROIDS FOR THE SIMPLIFICATION OF KERNEL DENSITY ESTIMATORS
    Schwander, Olivier
    Nielsen, Frank
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 737 - 740
  • [22] Consistency of kernel density estimators for causal processes
    Lin ZhengYan
    Zhao YueXu
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (05) : 1083 - 1108
  • [23] Consistency of kernel density estimators for causal processes
    ZhengYan Lin
    YueXu Zhao
    [J]. Science China Mathematics, 2014, 57 : 1083 - 1108
  • [24] Consistency of kernel density estimators for causal processes
    LIN ZhengYan
    ZHAO YueXu
    [J]. Science China Mathematics, 2014, 57 (05) : 1083 - 1108
  • [25] On kernel estimators of density for reversible Markov chains
    Longla, Martial
    Peligrad, Magda
    Sang, Hailin
    [J]. STATISTICS & PROBABILITY LETTERS, 2015, 100 : 149 - 157
  • [26] Kernel density estimators from quantized data
    Pawlak, M
    Stadtmuller, U
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (06) : 3553 - 3559
  • [27] The Study of Different Types of Kernel Density Estimators
    Sha, MingE
    Xie, Yonggang
    [J]. Proceedings of the 2nd International Conference on Electronics, Network and Computer Engineering (ICENCE 2016), 2016, 67 : 332 - 336
  • [28] A note on kernel density estimators with optimal bandwidths
    Hjort, NL
    Walker, SG
    [J]. STATISTICS & PROBABILITY LETTERS, 2001, 54 (02) : 153 - 159
  • [29] EFFECT OF ROUNDING ERRORS ON KERNEL DENSITY ESTIMATORS
    HOUDE, L
    LEPAGE, Y
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1991, 19 (04): : 361 - 369
  • [30] Weighted uniform consistency of kernel density estimators
    Giné, E
    Koltchinskii, V
    Zinn, J
    [J]. ANNALS OF PROBABILITY, 2004, 32 (3B): : 2570 - 2605